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Abstract 
This thesis studies how rocks evolve due to the coupled effects of flow and chemical 
reaction. The study was motivated by various experimental observations, both in 
igneous and sedimentary rocks. In the first part of this thesis, growth of microscopic, 
pore-scale, features in sedimentary rocks is theoretically investigated. It is found, 
in agreement with experiments, that statistical properties of pore-grain interfaces 
mirror growth conditions. The shapes of pore-grain intrefaces both influence and are 
influenced by large-scale transport properties of the rock. The second part of this 
thesis employs analytical methods to study flow patterns in melt upwelling beneath 
mid-ocean ridges. It is shown that high permeability channels spontaneously form, 
allowing for efficient extraction of melt from the system. This result may aid in 
understanding existing geochemical and geological observations. In the third part 
of this thesis, I present a new 3-D computer model that simulates flow and reaction 
through a porous matrix. The model is used to study and compare the different 
characteristics of dissolution and deposition, and to simulate different settings for 
melt upwelling in the mantle. 
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Chapter 1 

Introduction 

Motivated by various observations in sedimentary and igneous rocks, this thesis stud- 

ies a few aspects of the slow process of rock formation. Such a study of formation 

of geological features is reminiscent of a murder investigation of an unknown person: 

On the one hand, the body (in this thesis, a rock) is observed out of context. It had 

a long life previous to this moment, but only a few snapshots in time are available 

to deduce the full chain of events. On the other hand, there is a multitude of data, 

only a small percent of which may be essential in understanding what is observed, 

but it is hard to determine beforehand which parts to ignore. The studies in this the- 

sis propose that fluid flow and reaction through a porous medium strongly influence 

the evolution of rocks and their resulting properties, and may explain some of the 

experimentally observed richness. 

Understanding coupled flow and reaction is important in a variety of geological 

and industrial settings. Dissolution and precipitation that occur during brine flow are 

responsible, to a large degree, for the formation of sedimentary rocks from the initial 

compacted grains [63]. Both the flow patterns and the chemistry within the earths 

mantle are effected by similar processes of reactive porous flow (e.g., [10, 19, 64, 44]), 

but here the fluid is lava melted from the grains at temperatures hundreds of degrees 

higher than in sedimentary rocks. Geologists, oil companies, hydrologists, companies 

concerned by contaminents and even coffee percolator manufacturers would like to 

understand, and in the end quantify, time dependent changes in geometrical and 



transport properties of porous media due to clogging or corroding processes. 

The study of the evolution of porous media during reactive flow is also intriguing 

on its own right, being a relatively basic, yet not well understood, physical process. 

Because of the strong non-linearities and the multiple length and time scales involved, 

coupled flow and reaction is most difficult to tackle. Length scales range between 

micrometers, the scale of a single pore where chemical reaction rates may be controlled 

by transport and kinetics at the pore wall, to tens of kilometers which can be the 

scale for flow through a sedimentary basin or the mantle. Time scales range just as 

widely: Fluid may flow on time scales of hours, but may react for years before any 

significant change in porosity occurs. Flow and reaction through porous media is also 

one of the few physical systems in which length and time scales continuously change 

with time, making it impossible to define a unique set of non-dimensional parameters 

to describe flow. For example, as a porous media is dissolved by acid, channels may 

form with characteristic length scaled much larger than the initial Darcy scale, and 

flow rates orders of magnitude faster than in the initial configuration [16]. 

Structures formed in rocks would be relatively uninteresting if pore fluids were 

static and in complete equilibrium with surrounding rock. Luckily, many natural 

systems such as sedimentary basins or the upper mantle are chemically open systems, 

with fluids continuously driven from here to there or back. In this case, long-range 

interactions or extensive disequilibrium are the rule rather than the exception. The 

dynamical system can be studied via different approaches, ranging from microscopic 

studies [92, 36, 9] of reactive "particles" in actual "pores", to analog network simula- 

tions [24], to solutions of macroscopic partial differential equations [14, 57]. A delicate 

aspect in all studies is the bridging across the scales. Due to computational limitations 

it is still difficult to use microscopic models to study macroscopic behavior that occurs 

on scales much greater than a single pore. It is similarly impossible to use macro- 

scopic models to describe phenomena that occur on a pore scale. It is thus necessary 

to use a priori constitutive laws in macroscopic equations, which may be far removed 

from microscopic calculations. For example, solute concentration within a single pore 

may be uniform, but great differences in mineral compositions may be found between 
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neighboring pores [63]. Thus, one may conclude that although microscopic diffusion 

through pore fluids is most efficient, the resulting macroscopic diffusion coefficient 

is much smaller than naively expected, and is in some way influenced by interpore 

interaction. 

In this thesis the different length scales are treated separately. Figure 1-1 illus- 

trates the interactions between the scales of the different studies presented in this 

thesis. 

In the first part (Chapter II, also in [1]) I construct a physical microscopic model 

of pore-grain interface growth in sedimentary rocks, based on experimental results 

[43, 53] that indicate that pore scale dynamics are controlled by chemical reaction 

rates and not by transport rates. The effect of flow at this scale is thus only in sup- 

plying unequilibrated fluid to pores and so allowing the existence of non-equilibrium 

features, and not in supporting gradients as at the larger scales. Chapter II proposes 

that sedimentary rocks, regardless of their mineralogy, follow a universal path of evo- 

lution in which their pore-scale statistical characteristics continuously change as they 

approach (but possibly never achieve) local chemical equilibrium. These changing 

statistics are in turn tied to changes in permeability, to form a closed picture about 

the evolving sedimentary rock. It is interesting that forming features, of the order of 

micrometers, both influence and are influenced by the large scale fluid transport. 

In the second part of this thesis (Chapter III, also in [3]) I study macroscopic 

aspects of flow of melt, which is dissolving the surrounding mantle as it is up welling 

beneath mid-ocean ridges. Coupled flow and reaction in this case are shown to be re- 

sponsible for spontaneous formation of macroscopic channels, of fast and slow porous 

flow, which span the whole region of upwelling. The spontaneous formation of chan- 

nels may resolve a long-standing puzzle (e.g., [22]) in the understanding of melt ex- 

traction from mid-ocean ridges. Chapter III was proceeded by [36], which presented 

initial investigations, both computational and experimental, and a description of the 

relevant geochemical processes. 

In the third part of my thesis (Chapter IV) I present a macroscopic computer 

model of flow and reaction in 3-D, and apply it to both general aspects of flow and 
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mid-ocean ridge 

subduction arc 
volcanism 

Figure 1-1: (A) On the smelliest scales, the pore scale, this thesis studies statistical 
changes of pore-grain interfaces in sedimentary rocks. Results show that pore-grain 
interfaces both quantitatively reflect large scale changes in the rock (i.e., amount of 
diagenetic alteration), and effect the large scale transport properties. In this way scale 
(A) is tied to scale (B). (B) On the intermediate scale, this thesis studies the gen- 
eral effects of dissolution and precipitation on evolving porous media. 3D computer 
simulations show that dissolution will cause formation of preferred high permeabil- 
ity paths, (as illustrated in this figure by a black high permeability path formed by 
corrosive flow,) while precipitation will diffuse and homogenize any initially preferred 
paths of flow (not illustrated here). (C) On an even larger scale, coupled flow-reaction 
systems in different settings result in different geochemical and geological outcomes 
[36]. This thesis shows, by means of linear analysis and 3D computer simulations, 
that melt upwelling in conditions believed to describe midocean ridges, will focus into 
high permeability channels, due to its corrosive effect on the matrix. On the other 
hand, simulations mimicking intra-plate volcanism will result in diffuse flow, due to 
the cooling and crystallizing process induced by the continents, and a formation of an 
overpressurized region just below the crystallizing region. Using these results, large- 
scale geological and geochemical observations are understood via interactions on the 
intermediate scale (B). 
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reaction and to some scenarios of melt extraction from the mantle. The model is new 

both in its ability to simulate large systems more efficiently than previous models, 

and in its analytical macroscopic description of the deposition process. In Chapter IV 

the two processes of deposition and dissolution, and the organization of the porous 

media due to each one of them, are studied as opposite processes. The studies are 

performed in the limit where the effect of flow is maximized. In this case it is shown 

that dissolution produces long-range correlations in porosity and permeability while 

deposition produces negative correlations. The results of the experiments performed 

for melt migration agree both with Chapter III and with predictions in [36]. 

Lastly I will summarize the conclusions of this thesis: Coupled flow and reaction 

may be significant forces in shaping rocks as they evolve. This generic physical process 

may be responsible for the observed fractal structures on the pore scale of sedimentary 

rocks [38, 85, 1], for formation of channels in the mantle [3], or caves in calcite rocks 

[161. It may influence rates of lava flow, and in turn rates of sea-floor accretion or 

eruption of volcanos, and determine where dikes will initiate in the mantle (Chapter 

IV). 

I find that coupled flow and reaction are responsible for changing the statistical 

characteristics of a porous medium, with dissolution and deposition having qualita- 

tively opposite effects. It may be possible in the future to use the statistics of the 

"geometrical fingerprints" to obtain quantitative constraints on the processes that 

different rocks have undergone. It is also clear that flow and reaction effect perme- 

ability, in a way which needs to be further studied. Future studies require deeper 

understanding and quantification of the interaction between the scales. 

13 
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Chapter 2 

Roughness in rocks 

Abstract 

Recent laboratory measurements have shown that pore surfaces of most sedimentary 
rocks have a fractal dimension ranging mostly between 2.6 and 2.8. The lower and 
upper cutoffs for fractal behavior are 10~2 and 102 /im, respectively. The fractal 
dimension increases with diagenetic alteration. To explain these measurements, we 
construct a physical model of mineral deposition and dissolution on a substrate. We 
propose that when formation dynamics are reaction controlled, the forming pore-grain 
interface can be described by a non-linear partial differential equation for interface 
growth. We construct a discrete particle-deposition model corresponding to these 
dynamics. Three-dimensional computer simulations of the model show that resulting 
pore-grain interfaces are fractal, with a fractal dimension that increases from D ä 2.63 
to D « 2.84 as the dissolution rate is increased, in close agreement with observations. 
Additionally, our model predicts an increase in the amplitude of interface undulations 
with dissolution and fractal dimension. We conclude that geometrical measures of 
pore-grain interfaces are an indicator of the diagenetic history of sedimentary rocks, 
and are related to large scale changes in permeability. 

2.1    Introduction 

How can we better understand the conditions under which sedimentary rocks form? In 

this paper we concentrate on statistical measurements and geochemical observations 

to provide us with new insight into formation processes. Specifically, we study how 

dissolution, precipitation, weathering, erosion, and other processes that alter the pore- 

space of sedimentary rocks from its initial state (i.e., processes that cause "diagenetic 
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alteration"), affect certain statistical characteristic of these rocks. 

As shown schematically in Figure 2-1, pore-grain boundaries observed in sedimen- 

tary rocks are usually quite "rough" and complex. A growing body of measurements 

[5, 30, 94, 84, 21, 38, 39, 83] suggest that in most sandstones and shales these pore- 

grain interfaces are fractal for length scales ranging over 4 orders of magnitude, from 

approximately 10"2 to 102 /xm. The measured surface area, S, of a fractal interface 

has a power-law dependence on the lateral extent L of the interface: i.e., S(L) oc LD, 

where 2 < D < 3 is the interface fractal dimension [91]. Thus, the surface area 

of a fractal interface increases faster with L than if it were Euclidean (D=2), but 

slower than if it were a volume filling object (D=3). Fractal dimensions of pore sur- 

faces in sedimentary rocks are observed to range mostly between 2.6 and 2.8, with D 

increasing with diagenetic alteration [39, 38, 85]. 

In general, a fractal distribution of features in space also indicates spatial power- 

law correlations between them [89]. Specifically, the "density-density" correlation 

function, designated here c(r), describes the correlation between a scalar property p 

at position vectors r' and r' + r, 

c(r) = 1/V J p(r' + r)p(r')dr', (2.1) 

where V is the sample volume. When p(r') is a distribution of solid (p(r') = 1) and 

voids (p(r') = 0) in space, then c(r) is proportional to the probability of finding a 

solid object at position r + r', given that there is a solid object at position r'. For 

a fractal object with a fractal dimension D, embedded in the Euclidean dimension 

d = 3, this correlation function scales like [89] 

c(r) ~ rD-\ (2.2) 

If pore interfaces are indeed fractal, equation 2.2 implies a formation process that 

is responsible for long-range correlations in space; e.g., crystal growth at one point 

in the pore influences growth at other points. Hence, in the study of the evolution 

of rocks one cannot isolate growth of single crystals and hope to fully characterize 

the dynamical formation process. One must instead consider the effect of the growth 
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and dissolution of a large number of crystals and their effect on one another, in order 

to understand the statistical surface measurements and their implications for rock 

formation. 

In this paper we propose a physical model of evolution of pore-grain interfaces to 

explain such long-range correlations. Our goal is to provide a link between formation 

dynamics in rocks and measurable statistical properties. In constructing a model for 

explaining the existence of rough interfaces in rocks, we are guided by three main 

objectives: 

1. The model should describe non-equilibrium growth. 

2. The model should be independent of mineralogy, as is indicated by the range of 

length scales and diversity of minerals over which fractal behavior is observed. 

Specifically, fractal behavior is observed in rocks with many cementing compo- 

nents, from clays with crystals as small as 10~2/zm to quartz with up to 100/xm 

crystals. 

3. The dynamical model should be consistent with known geochemical constraints 

for growth. The results of the model should also be consistent with available 

qualitative and quantitative statistical observations in sedimentary rocks, and 

supply an explanation for the range of fractal dimensions measured. 

Previous attempts to construct a model [30, 15, 94] partially met the first two of 

these objectives but were unable to meet the third. In particular, no model has yet 

explained and predicted a range of observed fractal dimensions. 

The construction of our model follows from recent experimental studies, (e.g., [65, 

53]), that suggest that most sedimentary rocks form by reaction-controlled kinetics. 

Kinetics are reaction-controlled when the rate-limiting step for interface-growth is the 

chemical reaction at the interface rather than transport of mineral to the interface. 

We propose that when formation dynamics are reaction controlled, the forming pore- 

grain interface can be described by the interface growth equation derived by Kardar, 

Parisi and Zhang (KPZ) [1986]. This equation describes the evolution of an interface 

that grows everywhere in the direction normal to the interface, and includes terms to 
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allow for interfacial smoothing and random "noise". The KPZ equation has not been 

solved analytically for interfaces growing in the three-dimensional physical space, but 

a large body of numerical evidence shows that it describes the evolution of a self-affine 

(fractal) interface (see e.g.,[40]), with a fractal dimension that is possibly a function 

of varying growth conditions (e.g.,[95]). 

Since we aim to investigate how different formation conditions effect measurable 

statistical parameters, we construct a computer model to simulate reaction-limited 

kinetics with a tunable rate of growth. Our model is a discrete three-dimensional 

particle-deposition model which is a variant of the so called "single-step" model (SSM) 

proposed by [48]. The SSM and variations of it have been used extensively as generic 

models for interface growth. One reason for this particular choice of model is the 

theoretical connection that can be made with the KPZ equation [48, 6]. Our variation 

allows for dissolution to occur as well as deposition, and one can choose the relative 

rates of dissolution versus deposition by changing the value of a control parameter. 

Simulation results indicate that as the ratio of dissolution versus deposition at the 

interface approaches unity, the fractal dimension of forming interfaces increases. The 

range of fractal dimensions of the simulated interfaces lies between D = 2.63 ± 0.005 

and D = 2.84 ± 0.01, in close agreement to observations. 

We then introduce a second variation of this model in which we allow the interface 

to undergo partial thermodynamic equilibration when dissolving. This allows for a 

thermodynamic distribution of dissolution features, and formation of etch-pits and 

holes. This second variation of the model results in non-symmetrical dissolution and 

deposition kinetics, which might prove to be a more realistic description of growth 

dynamics, since asymmetrical functions for dissolution and precipitation have been 

experimentally observed for many minerals [65, 53, 54]. Simulations show that statis- 

tical descriptions of interfaces formed by Model II are similar to those obtained from 

Model I. 

After studying how growth affects formation of long-range correlations on inter- 

faces, as measured via their fractal dimensions, we investigate a different geometrical 

property, the "roughness amplitude", and its relation to formation dynamics. We find 
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that the amplitude of interface fluctuations increases both with dissolution and the 

fractal dimension of interfaces. Simulation results show good qualitative agreement 

with our theoretical predictions. 

Finally we compare results from simulations to existing observations and suggest 

an avenue for future work. 

2.2    Experimental motivation 

Experimental measurements, mostly motivated by a need to better characterize and 

predict properties of sedimentary rocks, have shown that sedimentary rocks are yet 

another one of the existing fractal objects to be found in nature [5, 30, 94, 84, 21, 

38, 39, 83]. Specifically, measurements have shown that pore-grain interfaces in most 

sandstones and shales are statistically scale-invariant over up to four orders of magni- 

tude; from 10_2/zm, the scale of the smallest cementing crystals, to 102/zm, the scale 

of a characteristic pore. 

These experimental measurements were performed using a variety of techniques. 

[21] covered the pore surfaces observed on thin sections with boxes of different sizes 

to find a power-law dependence between the size of boxes and the number of boxes 

needed to cover the pore surfaces. [84] measured the chord-length distribution formed 

by intersections between lines and pore surfaces observed on thin sections and frac- 

tures. Autocorrelation measurements were also done on thin-sections [30]. All the 

above mentioned techniques use thin-sections which are limited by the polishing pro- 

cess to a resolution of lfim. In order to find the statistics at the molecular level, 

molecular adsorption [5] and small-angle scattering measurements [94] were per- 

formed; these indicate fractal pore surfaces. Capillary-pressure measurements [18] 

have been used [83] on the intermediate scale, between 10-2 and 1/zm to provide 

overlapping data that supports the continuous power-law nature, over all relevant 

scales of pore-grain interfaces in most sedimentary rocks. 

Most (~ 75%) of the fractal dimension measurements of sedimentary rock pore- 

grain interfaces presented by [38] (Figure 2-3) fall within the range 2.6<D<2.8. [94] 
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found a distribution of fractal dimensions between 2.25 and 2.95. Figure 2-2 (repro- 

duced from [85]) shows thin-sections from 3 different sandstones, with D = 2.55,2.66 

and 2.75. In these thin-sections one can qualitatively observe a trend of increasing 

fractal dimension with increasing amount of cementation due to chemical diagenetic 

alteration of pores. 

Figure 2-4 (from [85]) serves to quantify the observation that D increases with 

diagenesis. When the pore-grain interface is fractal, a fractal porosity, (f>f, can be as- 

sociated with the pits and protruding features of these interfaces. The remaining open 

space, in which one can inflate an imaginary balloon, is defined to be the Euclidean 

porosity, <f>e (see Figure 2-1). <f>f is measured [85] using the capillary pressure method 

of de Gennes [18] that predicts that the capillary pressure of a non-wetting fluid, 

forced by pressure gradient to displace a wetting fluid, is indicative of the geometry 

of pore-grain interfaces in the rock. The total measured porosity, <f>m = (j>f + <f>e, is ob- 

tained by gas-displacement methods. The relative measure of fractal porosity versus 

total porosity, 4>fl4>m = 1 — ^e/^m> constitutes a measure of diagenetic alteration. As 

diagenesis progresses, the total porosity, (f>m, changes from being associated mainly 

with large open voids, 4>e, to porosity associated mainly with pits and protrusions on 

a rough interface, <f>f. In Figure 2-4 one can see that D increases with amount of 

diagenetic alteration as measured by <j>f/<f>m. 

2.3     Self-affine interfaces 

In this section we formulate a mathematical description of the physical mechanisms 

that alter pore-grain interfaces in sedimentary rocks. We study the evolution of an 

interface between two distinct regions, a region of a pore filled with fluid and a region 

of solid, as shown in Figure 2-5. The height, h(x), of the interface between the two 

phases is defined as the distance of the interface from a reference substrate. 
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2.3.1     Statistical description 

A self-affine interface is statistically similar to itself under an affine transformation; 

i.e., when the directions parallel and perpendicular to the substrate are magnified by- 

different values [87, 89] such that 

h{x) « b~ah{bx), (2.3) 

where b is the amount of stretching parallel to the substrate and b~a is the amount of 

stretching perpendicular to it. The approximation sign indicates that the two sides 

of the equation have identical statistical properties. 

A useful statistical parameter is the standard deviation of the height, which will 

be identified here, as in much of literature on interfaces, as the interface width, W: 

W(L) = (|&(x) - h\Y\ (2.4) 

where () denote an ensemble average, and h = l/L2 /0
L /i(x)dx is the mean interface 

height averaged over the lateral extent of the system L. The width of self-affine 

interfaces can be shown to relate to the linear dimension of the substrate L via a 

power law [89]: 

W(L) ~ La. (2.5) 

Here the exponent a has a simple relation to the fractal dimension of the interface, 

a = 3 - D, (2.6) 

for interfaces embedded in d = 3. 

Figure 2-6 shows plots of interfaces (obtained from our simulations as outlined 

in following sections) taken from ensembles with 2 different fractal dimensions. The 

first one, Figure 2-6a, is a realization from an ensemble of interfaces with a fractal 

dimension of D « 2.63. It is relatively smooth, with greater dominance of long- 

wavelength structures over small-scale variability. Figure 2-6b is a realization taken 

from an ensemble with D « 2.84. This interface is jagged with relatively greater 

short-wavelength variability. 
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After introducing the basic concepts used in the study of self-affine interfaces (for 

a review see [6]), we next examine continuum models of interfaces undergoing generic 

dynamical processes of growth and smoothing. 

2.3.2    Continuum models for dynamical growth of interfaces 

Smoothing processes 

The time evolution of a growing curved interface when subjected to smoothing pro- 

cesses such as surface tension effects, surface diffusion, mechanical erosion, weather- 

ing, recrystalization, etc, can be described by a simple diffusion equation: 

^^ = ,V2Mx,t) + A, (2.7) 

where h(x, t) is the surface height, A is the average velocity of interface growth, and 

v is an effective diffusion coefficient from the combined smoothing effects. A diffusion 

term in this context represents the decay of a curved interface due to processes that 

favor a lower surface energy. Such processes only rearrange the solid phase mass 

beneath the interface while conserving total mass. Any initial sinusoidal component 

of the interface which evolves by equation 2.7 decays exponentially to h(x, t) =const 

[13, p.7-12]. Flat interfaces, such as those resulting from the steady-state solution of 

the diffusion equation 2.7, correspond to a fractal dimension of D = 2 [91]. 

"Noisy smoothing" 

In real rocks random fluctuations can stem from impurities, anisotropies, nucleation 

processes, etc. We can mathematically model randomness in the formation process 

in a simple way by letting the rate of change in height have uncorrelated Gaussian 

fluctuations, T](x, t), with a zero mean and an amplitude of Q: 

< T/(X, t)ri(x', t') >= 2Q6(x - x')6(t - t'). (2.8) 

Given such a white noise structure, the full stochastic description of interfaces 

undergoing "noisy smoothing" is: 

— = vV2h + \ + T)(-x,t). (2.9) 
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Interfaces that grow according to 2.9 have a logarithmic relation between the width 

and lateral extent of the system [20]: 

W2{L)~ln{L) (2.10) 

Hence an interface undergoing a "noisy-smoothing" process does not have a power- 

law dependence of W on L, as in equation 2.5, and therefore does not have a fractal 

dimension as denned by equation 2.6. The closest approximation is a fractal dimension 

of D = d = 3, equal to the Euclidean dimension in which it is embedded. Thus 

equations 2.7 and 2.9 are insufficient to describe the dynamical growth process which 

is responsible for formation of fractal interfaces. 

Reaction-limited growth 

Interface kinetics can also influence the physics of growth.   Consider a mineral de- 

positing from a saturated solution on a substrate such as described in Figure 2-5. 

The deposition process is composed of two main steps: transport of mineral in the 

fluid phase to the solid interface via advection and diffusion, and incorporation of 

the mineral at the interface via chemical reaction. The slower of the two steps deter- 

mines the rate of interface growth. If reaction is slower than transport, the growth is 

called "reaction-controlled", while if transport is slower, growth is termed "transport- 

controlled". Reaction-controlled kinetics result in disappearance of concentration gra- 

dients in the fluid phase due to the fast transport, so that the concentration of mineral 

in the fluid is constant in space [50]. Thus the description of growth simplifies to only 

one variable, the height of the interface. Since there are no concentration variations 

in the fluid, every point on the interface will have equal probability to grow.   Be- 

cause there are no preferred directions and positions for growth, growth will occur 

normal to the local orientation of the interface and will be statistically uniform in 

space. This description is different from transport-limited growth, where one must 

consider the coupling between the interface height and the mineral concentration field 

in the fluid [42].  In that case growth sites that protrude into the fluid phase have 

a higher probability for deposition than growth sites on flat areas, because of the 
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steeper mineral concentration gradient near protrusions. Figure 2-7 schematically 

illustrates two extreme cases in the evolving different shapes of interfaces growing by 

reaction-controlled and diffusion-controlled mechanisms. 

Recent experiments indicate that most sedimentary rocks (excluding some carbon- 

ates [52, 51]) form in the reaction-limited regime [43, 65, 53, 54, 50]. Characteristic 

order-of-magnitude experimental reaction rates are üf_ ~ 10~8 moles/m2/sec for sil- 

ica [65] and ff_ ~ 10-13 moles/m2/sec for kaolinite [53, 54]. An order-of-magnitude 

calculation for diffusion rates of dissolving silica is [43] 

KV = . 

Taking the diffusion rate constant V to be 10"5 cm2 /sec, the solubility of silica to be 

Ceq ~ 10-3 moles/liter, the concentration at infinity to be C^, = 0, and the charac- 

teristic width of the boundary layer to be 6 = 1/zm , then K-p ~ 10~4moles/m2/sec. 

Thus diffusion rates in such a calculation are O(104) times faster then reaction rates, 

resulting in a uniform concentration of mineral in the fluid, and reaction-limited 

growth. 

Given an interface that grows by reaction-limited growth, (i.e. normal to its local 

orientation) with a constant normal growth velocity A, Figure 2-8 shows, from purely 

geometrical arguments, that the increment of growth projected onto the h direction 

is 

Sh = {{\8tf + (XStVh)2)1/2. (2.11) 

For small slopes this can be written [29] as 

^«A + iAW, (2.12) 

where the growth velocity A depends on the saturation of depositing minerals in 

the fluid and reaction rates and can be time dependent. Here we shall assume for 

simplicity that the saturation is quasi-static, i.e. the saturation is effectively constant 

on the time-scales required for the interface to reach a statistical steady-state. 

To combine smoothing, randomness, and growth processes we write an equation 
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describing the evolution of an interface as 

^ = vV'h + ±\(Vh)2+r,(x,t), (2.13) 

where we have changed to a reference frame moving with the average interface ve- 

locity A. Equation 2.13 (commonly referred to as the "KPZ" equation), was first 

introduced for the study of interface growth by [29]. The KPZ equation has been 

studied extensively as a continuum model for evolving interfaces, but due to in- 

tractable mathematical difficulties, numerical methods and theoretical investigation 

of its statistical characteristics constitute the main directions of research [6]. 

The deterministic version of 2.13, i.e., with 7/(x,i) = 0, has known solutions. Re- 

sulting surfaces develop as a collection of paraboloids joined together by discontinu- 

ities in Wh. Normal growth results in bumps growing laterally as well as sideways, so 

that an interface with some initial random configuration of features will tend toward 

increasing dominance of long-wavelength features over short-wavelength features, as 

seen in Figure 2-7a. The relaxation toward a fiat interface in this case is interesting 

and quite different from the ordinary "diffusion" dominated case, as described by 2.7. 

For example, in an interface flattening in d = 2, the lateral extent of paraboloids grows 

with a power-law dependence on time, faster than the decay of a surface flattening 

due to diffusion-like smoothing processes [29]. 

Dynamic renormalization group calculations predict that interfaces that evolve 

according to the full stochastic equation 2.13 exhibit statistical scaling in space and 

time [29]. The width of these interfaces grows with time until it reaches a steady 

state, after which it retains a constant value W,t 

W.{L) ~ La. (2.14) 

The steady-state interface is thus a self-affine fractal, as defined by 2.5 and 2.6. While 

there are no conclusive theoretical predictions, computer simulations in d = 3 suggest 

the existence of a continuous transition from formation of non-fractal interfaces to 

formation of interfaces with D « 2.6 (or a « 0.4) as |A| is increased from 0 to some 

finite value [95, 4, 59]. 
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An intuitive understanding of the physics described by equation 2.13 can be gained 

by considering the effects of each term in 2.13 on formation of long-range correlations 

in the system: 

a) When only diffusion-like smoothing acts upon the interface (i/^0 and A, r\ = 0 in 

2.13, resulting in 2.7), the steady-state interface is h(x) =const, and since all points 

have identical height, a "height-height" correlation function does not decay in space 

and D = 2. 

b) When white noise is added (v,r) ^ 0, A = 0, resulting in 2.9), the never-decaying 

correlations obtained in case (a) are diminished by the noisy random forcing. This 

results in an interface width W that grows only logarithmically with system size 

corresponding to the limit a —* 0 (D —> 3) in equation 2.6. 

c) When reaction-limited growth is also present (v,r},\ ^ 0, resulting in the full 

equation 2.13), "bumps" grow normal to the interface; thus when they grow upwards 

they also grow sideways (Figure 2-7a) at a rate faster than diffusion would predict, 

allowing local "height information" to be transmitted laterally. Hence normal growth 

enhances formation of long-range correlations and long-wavelength features, while 

suppressing or smoothing out short wavelength features, and thus decreases the fractal 

dimension of the forming interface. 

Equation 2.13 therefore represents a balance between factors (diffusion and re- 

action limited growth) which tend to reduce small-scale features (decrease fractal 

dimension) and a factor (random forcing) which tends to relatively increase small- 

scale features. The balance that is struck by the coefficients of 2.13 should determine 

the fractal dimension of the pore interfaces. 

A common method for quantitative study of growing interfaces is the construction 

of simple discrete models governed by processes similar to those described by the re- 

spective continuous equations. This approach avoids the severe sensitivity that direct 

numerical solutions to 2.13 exhibit. Such analog discrete models are also appealing 

due to their relatively simple implementation and the fact that in most interface 

growth problems (as in our problem of growth of crystals on interfaces) the physical 

system studied is actually discrete by nature. Nevertheless, continuous equations such 
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as 2.13 provide a predictive physical framework for the discrete studies. Here, the 

continuous representation is useful both for isolating the different processes involved 

in formation of pore-grain interfaces and for providing some physical insight into dy- 

namics of formation of long-range correlations. For a review of recent approaches and 

results in the study of fractal interface growth see [45] and [6]. 

2.4    Computer simulations 

We next present two simple discrete-particle models of interfaces roughening by de- 

position and dissolution, variations of the so-called 'single-step' model (SSM) [48] . 

The average properties of the SSM can be calculated and shown to correspond, to a 

first approximation, to equation 2.13 [48, 60]. It is this theoretical correspondence, as 

well as the existence of a physical analog between mechanisms in rocks and deposition 

and dissolution in the model, that led us to choose the SSM over the multitude of 

other discrete-particle models used to study the KPZ equation. 

The original SSM (Figure 2-9) starts with a square lattice that is filled by steps 

in a checker-board manner; i.e., every filled site is a step of height 1 surrounded by 

nearest neighbor holes of height 0. At each successive time step, a site is chosen at 

random from all the sites that are local minima (i.e., sites that are lower than any of 

their nearest neighbors). The chosen site is then filled by a block of height 2, so that 

it now becomes a local maximum, 1 step higher than its neighbors. Qualitatively, the 

SSM captures the three generic physical processes described by the KPZ equation in 

the following way: 

I) The SSM has an intrinsic smoothing process, corresponding to a diffusional term 

v in 2.13, due to the requirement that the choice of deposition sites must be among 

the ones that are local minima, thus effectively "smoothing" away holes. 

II) Randomness, corresponding to 77 in 2.13, is incorporated in the SSM by the ran- 

dom choice among all available sites. 

III) Reaction-limited growth is incorporated because growth is restricted by the avail- 

ability of growth sites, rather than by the supply of blocks from, say, a diffusing field. 
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The non-linear term in the continuum description of the SSM emerges from a geo- 

metrical argument similar to the one made in deriving 2.13. In Figure 2-8 the change 

in local height (Sh) during normal growth is an increasing function of the local slope 

(VA), so that A > 0 in 2.13. In a 2d SSM, a locally flat interface has a height config- 

uration of h(x{) = c for i even, h{xi) = c + 1 for i odd, where c is a constant. In this 

case, half the sites are local minima and are available for growth, and the interface 

can grow rapidly. On the other hand, for an inclined interface (/i(x,) = a + bi) there 

are no sites available for growth, since no site is a local minimum. Hence, as with 

the KPZ equation, the SSM model enforces a dependence of local height change (Sh) 

on local slope, but in the opposite sense (i.e. A < 0).. A quantitative derivation of 

2.13 from the average properties of the SSM was made using mappings of the SSM 

to Ising spin and lattice gas models, and can be found in [48] and [6]. 

2.4.1     Model I: Symmetric dissolution and precipitation 

Specifications We are interested in testing the hypothesis that the fractal dimen- 

sion of forming interfaces depends on the relative amplitudes of noise 77, smoothing 

rate v, and reaction-controlled growth rate A. We propose to control the reaction con- 

trolled growth rate by allowing dissolution of blocks in dynamics that mirror those of 

deposition. At each time-step a deposition event, as described above, will occur with 

a probability p+ (0 > p+ > 1) and a dissolution event will occur with a probability 

p_ = 1 — p+. A dissolution event is defined to be the subtraction of a block of length 

2 from a site randomly chosen among all the sites that are local maxima. By allow- 

ing particles to attach and detach to the interface, we hope to simulate molecular 

exchange across phase boundaries; increasing p_ increases the number of particles 

leaving the interface versus the number attaching to it. 

Two-dimensional analogs of our model have been studied by [60] and [6]. They 

calculate that, on average, the evolution of the simulated interface is described by 

2.13. Parameters v and Q are constants independent of p+) while 

A = -(p+-p_). (2.15) 
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Qualitatively, 2.15 describes a relation between the average growth velocity of the 

interface (oc (p+ — p_)) and the non-linear coefficient A. As expected from analog 

calculations for the continuum model (Figure 2-8 and equation 2.12) the magnitude 

of the non-linear coefficient increases with increasing interface growth velocity. Here 

|A| is maximum when p+ = 1, and decreases to 0 when dissolution balances deposition 

and the interface has no net growth. 

Results. Simulations of growing interfaces were performed for different system sizes, 

with p+ varying from 0.5 to 1. (Note that p+ = 0.5 is a symmetry point, and results 

obtained for advancing interfaces are applicable to retreating interfaces, with p_ and 

p+ exchanged). Representative interfaces with p+ = 1 and p+ = 0.6 are shown in 

Figure 2-6. To quantitatively test whether resulting interfaces are self-affine, the 

interface width, W(t) (as defined by equation 2.4) is measured for different system 

sizes L and averaged over an ensemble of 300 simulations performed with different 

random numbers. We find that the width of interfaces grows as a function of time 

until it reaches a statistically constant saturation value, Wt. Thereafter it exhibits 

a power-law dependence on system size, L, and remains self-affine, obeying equation 

2.14. We ascribe this behavior to growth of 'bumps' both vertically and horizontally, 

as explained for Figure 2-7a, until a saturation value for the amplitude of the largest 

bumps is obtained when the wavelength corresponding of the lateral extent of the 

largest features reaches the system size. The initial transient phase of power-law 

growth in time is characteristic to interfaces that obey dynamics described by 2.13. 

The initial power-law growth of our model agrees well with theoretical predictions 

[40] for all p+>0.6. Although this transient evolution of interfaces is an interesting 

aspect of the problem, we limit the discussion in this paper to the non-equilibrium 

steady-state, since that is where we can make comparison with experiments. 

To demonstrate the fractal nature of the resulting statistically steady-state inter- 

faces, we plot log10 W. versus log10 L. For self-affine interfaces equations 2.14 and 2.6 

should hold, and hence we expect that the width of self-affine interfaces will plot as 

straight lines on this graph with a slope which is equal to 3 - D. Figure 8a shows 
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such plots for various p+ values. Note that as p+ decreases, the slope of the graph 

decreases, indicating an increase in the fractal dimension of the resulting interfaces 

with increasing amount of dissolution. For p+<0.6 the results of simulations are 

not well-fit by a straight line; these interfaces are not self-affine. Figure 2-10b, a 

plot of W? versus lni, demonstrates that 2.10 provides a better fit for the data for 

high dissolution rates. This is consistent with the expectation that a transition from 

power-law to Wj ~ InL behavior will occur when p_ —* p+ and A —» 0. 

After obtaining D for various p+ values from Figure 2-10a, we investigated func- 

tional relations between deposition rate, dissolution rates, and fractal dimensions of 

forming interfaces. In Figure 2-11 we plot D versus a nondimensional parameter 

P-/p+ which we term the "dissolution-deposition ratio". The dissolution-deposition 

ratio measures the rate of particles leaving the interface (2p_) versus the rate of 

particles attaching to it (2p+). 

The fractal dimension of resulting interfaces is seen to increase with the dissolution- 

deposition ratio, with a curve showing that for p~/p+ = 0, D = 2.63 ± 0.005, in 

agreement with previous simulations of the pure deposition SSM [48], and as p-/p+ 

increases, D approaches a limiting value of 2.84±0.01. An increase in the dissolution- 

deposition ratio above p~/p+ ~ 0.7 results in suspected loss of fractal behavior and 

a transition to logarithmic, rather than power-law, dependence of W, on L. 

2.4.2    Model II: Asymmetric model of dissolution and pre- 

cipitation 

Specifications. We next construct a variation of Model I that models dissolution 

in partial thermodynamic equilibrium [93]. This is done in order to investigate the 

effects of a finite probability for the development of features such as etch pits and 

holes that can be found in rocks. Allowing for partial thermodynamic equilibration 

in the dissolution step, but not in the deposition step, creates an asymmetry between 

the two processes. Asymmetrical functions for dissolution and precipitation have been 

experimentally observed for many minerals [65, 53, 54]. 
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In Model II, deposition occurs with probability p+ identical to the deposition step 

in Model I, but a temperature-dependent dissolution step occurs with probability 

P_ — 1 _ p+ in a way that allows for thermodynamic equilibration of the interface. 

The dissolution step is constructed as following: A site i is randomly chosen among 

all the sites of the interface and the local surface area 

is measured, where summation is over the 4 nearest neighbors. If a block is to be dis- 

solved at site t, the change in surface area, AJE; = X)« (Ik - 2 - hi+s\ — \h{ — h+sW 

is calculated. The probability q of occurrence of a dissolution event at site i is then 

denned to be 

' 1 if AE < 0 
(2.16) 

e-AE/kT    ifA£>0 

Here kT is a tunable model temperature, roughly analogous to a thermodynamic 

temperature. Dissolution at site i will thus happen if a dissolution event results in 

reduced or equivalent surface area, and will have an exponentially decaying probability 

to occur if the surface area is increased by the dissolution step. Finite probability for 

increasing the surface area is allowed in order to model etch-pits and holes, features 

observed in rocks. If dissolution of a block did not occur at the site i first chosen, a 

different site is randomly chosen among all the sites of the interface and a dissolution 

event is attempted (according to rule 2.16) at the newly chosen site, and so on, until 

an attempt to dissolve is successful. The only effect of these repetitive attempts at 

dissolution is to force p_ to be constant and equal to 1 — p+. At the zero temperature 

limit this model reduces to Model I. At high enough temperatures the dissolution 

step introduces only noise to the system while reducing the growth rate. 

Because dissolution introduces a thermodynamical equilibration procedure that 

is not duplicated in the deposition event, the dynamics of retreating interfaces with 

p+ < 0.5 in Model II are not the mirror image of interfaces with p+ > 0.5. This 

asymmetry is the fundamental difference between Model II and model I. 
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Results. We performed statistical studies for interfaces forming at different kT,p+, 

and L. At all temperatures studied we find that, similar to the results of Model 

I, the width of interfaces formed by Model II have a transient stage of dynamical 

scaling, after which they reach a statistical steady-state. Graphs of \ogWa{L) as 

function of logL are plotted in Figure 2-12a and b for kT = 1 and kT = 100, 

respectively. It is demonstrated that power-law models provide a good fit to the 

data, although logarithmic dependence between the width and size of the system for 

high dissolution rates at low temperatures cannot be ruled out. The fractal dimension 

for kT = 1 (Figure 2-12a) is seen to increase with increasing p~/p+ similarly to results 

of Model I. For kT = 100 (Figure 2-12b) we note a different behavior than for the low 

temperatures. The fractal dimension (deduced from the measured slope) of interfaces 

is nearly constant with increased dissolution, but the amplitude of the width increases 

with decreasing p+. 

Figure 2-13 shows the fractal dimension of interfaces as function of p_/p+. The 

four curves correspond to four different temperatures: kT = 10-2,1,102 from this 

model, and kT — 0 replotted from Model I. At high temperatures (kT = 102) the 

fractal dimension is nearly constant as a function of relative dissolution rate. For 

low temperatures all curves follow the same trend of increased D with increased 

dissolution. We believe that interfaces formed at low temperature are not fractal for 

p_/p+>0.7. 

2.4.3    Roughness of interfaces 

The notion of roughness of an interface, i.e. the amplitude of its fluctuations, can be 

quantified by measuring the prefactor in equation 2.14, now rewritten as 

W, = A(D)L3-D (2.17) 

The prefactor, A(D), is termed the "roughness amplitude", and measures the ampli- 

tude of the undulations of interfaces. 

In Figure 2-14 we plot A, calculated for all temperatures, from intercepts of lines 

in Figures 2-10a and 2-12a,b with the width axis, versus P-/p+.  We find that the 
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roughness amplitude increases approximately linearly with the dissolution-deposition 

ratio. It is interesting to note that data from all temperatures follow the same lin- 

ear trend, except where interfaces are not likely to be fractal. At low temperatures, 

where dissolution-deposition ratio is high enough (p_/p+>0.7), the roughness reaches 

a plateau and diverges from the linear trend. We attribute this to the logarithmic 

dependence of W2 on L for dissolution-deposition ratios close to unity. Thus we can 

use the divergence from the linear trend in Figure 2-14 as another indication for cir- 

cumstances for which interfaces cannot be well modeled as fractals. The dissolution- 

deposition ratio obtained for this divergence (p_/p+>0.7) is consistent with that 

determined from Figures 2-10 and 2-12. 

The dependence of A on D can be predicted for the zero temperature model by 

using two constraints. The first constraint emerges from the "single-steppedness" of 

Model I: the square of the slope of the height at any given site must always be equal to 

unity (|hi — hi+s^ = !)• The second constraint is that the power spectra of self-affine 

interfaces have a power-law form [87]. The details of predicting A(D) are given in 

Appendix A. 

Figure 2-15 shows that for kT = 0, A is an increasing function of D, which means 

that on short length-scales interfaces with high fractal dimensions appear rougher 

and have larger undulations than interfaces with lower fractal dimensions. The dis- 

crepancy between simulation results and theoretical predictions is probably due to 

the fact that the power spectrum in the theoretical calculation of A(D) is assumed to 

follow a power-law at all wavelengths (as given in equation A.9), but in reality only 

follows this behavior between high and low wavenumber cutoffs. 

We note that although A is an increasing function of p~/p+ and D (Figures 2-14 

and 2-15), the measured width W of interfaces of large enough lateral extant I» is a 

decreasing function of p+/p~ and D. This is because as the system size increases, 

W increases as well, but more slowly for interfaces with high fractal dimensions than 

for interfaces with low fractal dimensions, which can be seen from both equation 2.17 

and Figure 2-10. Thus, for a "system-sized elephant" an interface with a high fractal 

dimension appears smoother than one with a lower fractal dimension, while for a 
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"particle-sized ant" an interface with a high fractal dimension is rougher than one 

with a low fractal dimension. 

2.5    Summary and discussion 

2.5.1    Summary of model and results. 

Motivated by experimental data indicating fractal pore surfaces in sedimentary rocks, 

we have developed an analytical description and a simple computer model for reaction- 

controlled growth of interfaces. Analytical arguments lead to the KPZ equation 

2.13 [29], a non-linear partial differential equation extensively studied as a model 

for growth of self-affine interfaces (e.g., [6]). This equation describes dynamical in- 

terface evolution governed by diffusion-like smoothing, reaction-limited growth, and 

random events. Our goal in studying such dynamical descriptions of interface growth 

was to find a link between physical processes that govern growth and geometrical 

properties of resulting interfaces. Such a link can help constrain formation history of 

rocks by measuring their geometrical properties. 

In order to study how different dynamical processes affect the steady-state statis- 

tics of interfaces we have constructed a discrete particle deposition and dissolution 

model which incorporates reaction-limited growth, interfacial smoothing, and random 

"noise" processes at a growing interface and provides a control over the relative rates 

of these processes. The average properties of interfaces formed by this model were 

shown (in d = 2) to correspond to the KPZ equation. We qualitatively explain this 

correspondence. 

Interfaces formed by our model go through a transient stage of roughening after 

which they reach a statistical steady state, where the interfaces still grow, but their 

statistical characteristics remain constant. The steady-state interfaces are fractal for 

most parameter ranges, with the fractal dimension increasing from 2.63 ± 0.005 to 

2.84 ± 0.01 as the dissolution-deposition ratio is increased. For dissolution-deposition 

ratios approaching unity, interfaces formed are no longer fractal.  These results are 

34 



consistent with ein expected transition from fractal to non-fractal interfaces when the 

magnitude of the non-linear term in the KPZ equation is decreased from a finite value 

to 0. The nature of the transition is not theoretically predicted. 

We also find that the "roughness amplitude" of interfaces, A (as defined in equa- 

tion 2.17), increases with increasing dissolution-deposition ratio and increasing fractal 

dimension of simulated surfaces. This behavior is in relatively good agreement with 

our theoretical predictions. 

2.5.2    Comparison with experiments 

The emerging physical picture. Laboratory measurements show that the ma- 

jority of sedimentary rocks are fractal with 2.55^J3^2.8, as seen in Figures 2-3 and 

2-4. This range coincides approximately with our simulation results. The experi- 

mental observations also show that rocks with highly diagenetically altered porosity 

(generally the samples with higher content of cementing materials, and more evi- 

dence of dissolution and precipitation) correspond to the higher fractal dimensions. 

We propose the following scenario to explain the observed trend in the geometry 

of pore-grain interfaces: Near-surface sedimentary rocks are usually part of a large 

scale system through which fluid is flowing at non-negligible flow rates. These rocks 

are thus prevented from reaching global chemical equilibrium as one would expect 

for samples in a closed system. Diagenetic processes occur in the forming rock as 

a consequence of this non-equilibrium situation. Since diagenesis generally acts to 

reduce permeability [69, 63], the rock becomes more resistant to fluid flow with time. 

Although global equilibrium is not reached, the reduction in flow rates results in pore 

fluids spending more time in a pore and thus becoming more locally chemically equi- 

librated with surrounding solid. Thus, growth and dissolution ionic fluxes at the pore 

surface begin to equilibrate and p~/p+ increases. Figure 2-11 shows that the fractal 

dimension increases when p_/p+ increases, while Figures 2-2 and 2-4 show that the 

fractal dimension increases with diagenetic alteration. The model and experiments 

together suggest that growth and dissolution in a finite volume lead to a unique "di- 

agenetic pathway" that is descriptive of pore evolution in many similar rocks.   At 
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the beginning of the pathway the pore is relatively open, crystal growth is reaction 

limited with a small p~/p+ (or small p+/p~, in the symmetrical case of dissolving 

interfaces) and the resulting fractal dimension is near 2.6. As the pore space is filled, 

the balance of growth and dissolution rates shifts toward unity, p~/p+ increases, and 

so the fractal dimension increases. Following this model, [85] find a limiting fractal 

dimension, D = 2.75, reached by the competition between rates of ionic diffusion on 

an increasingly rough surface, and reaction. 

Finally, it is possible to tie the physical picture with a recent result that demon- 

strates (Figure 2-16) that the permeability, /C, is related to <f>e and Ze, the Euclidean 

porosity and length scale, and not to the total porosity and length scales [85, 2], via: 

*=jS«ä. (2.18) 

Since (j>f/<f>m = 1 — <i>el<t>m. increases with diagenesis (see Figure 2-4), equation 2.18 

predicts that permeability will decrease with time, even if <f>m stayed constant (a 

prediction in agreement with experimental results in [69]). The reduced fluid flow 

rates result in more equilibration and so the fractal dimension will increase, and 

<f>f and <f)e will consequently change. Thus, the evolving microscopic features on 

pore-grain interfaces both influence and are influenced by the large scale transport 

properties. 

Comparison of model results for the "roughness amplitude" with data from real 

rocks should be approached with caution because of the large number of variable 

parameters. These can be dealt with by constructing suitable transformations (e.g. 

doubling molecular size would result in double roughness amplitude). Although at 

this point we have no reliable data to which we can compare our roughness results, 

estimates of A from [38] show a trend of increasing A with D, as predicted quan- 

titatively from our models. Our simulations also predict that diagenetically altered 

pores that appear rough on the crystal scale will appear smooth on the pore scale, 

while rocks which have low D and little diagenetic alteration will appear smooth on 

the crystal scale but rough and strongly undulating on the pore scale. At this point 

we do not have enough data to check this prediction. 

36 



Deviations of some observations from the predicted. Simulation results do 

not predict the observations of sedimentary rocks with JD;$2.6. Since it is our in- 

tention to capture the dominant physical processes in pore-grain interfaces, why can 

we not simulate these existing, though less common, observations? Most likely our 

model does not adequately describe all natural growth environments, in particular 

the different growth mechanisms. We propose that the small percentage of rocks that 

have a fractal dimension which cannot be explained by our model should serve as a 

test for a point of departure of the formation conditions from the ones assumed by 

our models. For example, transport-controlled growth, which was not investigated 

here, may produce completely different results from our model. Transport-limited 

growth might be the mode of growth for some carbonates (e.g., calcite and arogonite 

at certain pH levels [52, 51]) that are highly soluble. Bedford limestone, a carbonate 

for which D = 2.35 [39], serves as an example for transport limited growth leading 

to fractal interfaces, with a fractal dimension quite different than that predicted by 

our model. Another possibility is that all the processes that we have termed "noise" 

are not uncorrelated as we postulate. While uncorrelated noise might be a good 

assumption in most cases for forming sedimentary rocks (due to the generally short 

range nature of the forces exerted by ions on the interface, the random position of 

impurities and orientation of grains on which growth occurs, the random process of 

nucleation, and a variety of other conditions), one can imagine cases where random 

events tend to be correlated in space and time, such as when one mineral acts to lower 

the surface energy for a second mineral to crystallize, or when events are correlated 

in space by certain directions of growth being energetically preferred. By introducing 

power-law correlated noise, interfaces may be formed with a continuously varying 

fractal dimension between 2 and 3, as demonstrated by computer and theoretical 

models [49, 46, 47]. As one might naively expect, forcing external correlations (anti- 

correlations) on the growth process indeed increases (decreases) correlations between 

points on the interface and results in a lower (higher) surface fractal dimension. 
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2.6    Conclusion 

Our proposed physical and numerical model addresses the three requirements posed 

in the introduction: it is a model of non-equilibrium growth, it is independent of 

mineralogy, and it agrees with the observations that higher fractal dimensions are 

found in rocks that are more diagenetically altered. Thus, we believe that the general 

physical mechanism of growth in most shales and sandstones can be captured by the 

simple processes of reaction-limited growth and smoothing in a noisy system. This 

microscopic growth is in turn linked to the large scale permeability changes occurring 

during diagenesis. 

This work constitutes a first step in using geometrical constraints to study the 

dynamical history of the formation of rocks. More quantitative observations of geo- 

metrical properties as well as more experiments for controlled growth in the laboratory 

are necessary before a comprehensive theory can be developed. 
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Figure 2-1: Schematic diagram of a single pore in a sedimentary rock. Pore-grain 
interfaces in sedimentary rocks are generally quite convoluted with geometrical struc- 
tures formed by cementing crystals and corroded etch pits and holes. The total 
porosity, <f>m, is a sum of <f>e, the porosity associated with Euclidean open pore space, 
and (f>f, the porosity associated with fractal undulations of the pore-grain interface. 
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(a) 

(b) 

(c) 

Figure 2-2: From [85]. Thin sections of three sandstones. (A) Table sandstone with 
a fractal dimension of D = 2.55. (B) Price River sandstone with D = 2.66. (C) 
Coconino sandstone with D = 2.75. The fractal dimension increases with increasing 
volume of cementing material and dissolution of the initial sand grains. 

40 



<L> 

s 

o 
<D 

a 

u 

8 

6 

4 

2 

' i n i 

2.2 2.4 2.6 2.8 
D (fractal dimension) 

3.0 

Figure 2-3: A histogram of fractal dimensions for 27 different rocks. Bins are of equal 
size. The data are from [38]. 75% of the observed rocks have a fractal dimension 
between 2.6 and 2.8. 
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Figure 2-4: From [85]. The measured fractal dimension D of pore-grain interfaces 
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<f>f/<f>m, of 11 different sandstones and 1 shale. The plot shows a monotonic increase 
of D with (f>f/<f)m. 
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Figure 2-5: A schematic view of the interface between a fluid-filled rock pore and a 
solid rock material. This is the setting of the theoretical problem: an interface, with 
no overhangs, constitutes the boundary between fluid and solid phases. The interface 
position is described as a height deviation, h(x,t), from a substrate. L is the lateral 
extent of the substrate on which the interface grows. 
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(a) 

(b) 

Figure 2-6: Plots of two interfaces taken out of ensembles with 2 different fractal 
dimensions. The interfaces were obtained from simulations of Model I, performed 
on lattices of size 96 x 96. Dark shadings indicate lower then average height and 
light colors indicate heights greater then average, (a) A sample realization from 
an ensemble with a fractal dimension of D = 2.63. It shows relatively subdued 
short-wavelength features (formed with p+ = 1). (b) A sample realization from an 
ensemble with D = 2.84. This interface is jagged with relatively more power to short 
wavelength features (formed with p+ = 0.6). 
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Figure 2-7: A schematic drawing of growth by (a) only reaction controlled kinetics 
and (b) only transport controlled kinetics (shown in the limit of infinitely fast reaction 
rates). Both interfaces start from the same initial condition, and successive profiles 
correspond to propagation in time, (a) is growing normal to its local orientation, 
with a constant normal growth rate. Large bumps grow at the expanse of small ones, 
creating parabolas which are joined by discontinuities in VA. [29]. (b) illustrates the 
Mullins-Sekerka instability. Protruding features create steep concentration gradients 
in the fluid phase, thus increasing transport of mineral from the fluid to the interface 
and causing a further growth of the height of the protrusion, in a positive feedback 
mechanism. Selected wavelengths grow exponentially in time [42]. 
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Figure 2-8: In reaction limited kinetics, growth occurs normal to the interface. The 
position of the interface at time t is indicated by a thick solid line and the position 
at time t + St by a dashed line. The change in local height, 6h(x,t), relates to the 
normal growth velocity, A, via 6h2 = (XSt)2 + (XStVh)2. This relationship can be 
derived from trigonometrical considerations, where identical angles are indicated by 
a double solid line [29]. 
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t + 1 

t + 2 

Figure 2-9: A schematic drawing of the discrete-particle deposition "single-step" 
model of a growing interface embedded in two-dimensional physical space, using pe- 
riodic boundary conditions. A block of length 2 is added at each successive time step 
to a site randomly chosen among all sites that are a local minima. 
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Figure 2-10: (a) Logarithm (base 10) of saturated value of interface width, Wa ver- 
sus the logarithm of system size L. For self-affine interfaces Ws will have a linear 
dependence on L with a slope equal to 3 — D. Different symbols correspond to dif- 
ferent 0.5 < p+ < 1. Solid lines indicate best fits from linear regression. As p+ 

is decreased, the slope of the graph decreases, indicating an increase in the fractal 
dimension of resulting interfaces with increasing dissolution-deposition ratio. When 
dissolution begins to balance deposition (p+ < 0.6), the deviations from a linear de- 
pendence indicate that the interfaces are not self-affine. Error bars, taken as the 
standard deviation of the measured width from its steady saturation value, are of the 
order of the symbol size, (b) A plot of W? versus ln(Z,). Solid lines are best fits from 
linear regression. This plot demonstrates that a better model to fit the data for high 
dissolution-deposition ratios (p+<0.6), is W? ~ (lni). This transition is expected to 
occur when |A| —► 0 in 2.13. 
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Figure 2-11: Using the slopes of the linear regression best-fits in Figure2-10a, we plot 
D versus P-/p+, the dissolution-deposition ratio rate. Error bars are calculated using 
the standard deviation from the linear regression best-fits. The fractal dimension of 
resulting interfaces is seen to increase with p_/p+. For p~/p+ = 0 D = 2.63 ± 0.005. 
As p-/p+ increases D approaches a limiting value of 2.84 ± 0.01. A further increase 
in p_/p+, above p_/p+ « 0.7, results in suspected loss of fractal behavior and a 
transition to logarithmic dependence, instead of power-law dependence, of W, on L. 
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Figure 2-12: Graphs of log10(Wa(L)) as function of log10(L) for (a) kT = 1 and (b) 
kT = 100. Solid lines are best fits from linear regression. For kT = 1 the fractal 
dimension increases (the slope decreases) with decreasing p+ similarly to results of 
Model I. For kT = 100 the behavior is different: the slope, and hence the fractal 
dimension, is nearly constant with p_/p+. 
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Figure 2-13: Fractal dimension of interfaces as a function of p_/p+J the dissolution- 
deposition ratio. The four curves correspond to four different temperatures: kT = 
10"2,10°, and 102 from Model II and kT = 0 replotted from Model I. D is deduced 
from the slopes of plots similar to Figures 2-10 and 2-12. At high temperatures (kT = 
102) the fractal dimension does not change perceptibly as a function of p_/p+. For low 
temperatures, curves follow a trend of increasing D with increased p_/p+. Although 
we plot results from all simulations, interfaces where dissolution and precipitation 
rates are nearly balanced, when p-/p+ > 0.7, are probably not fractal, as can be 
observed in Figures 2-10 and 2-12. 
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Figure 2-14: A, the "roughness amplitude", calculated from intercepts of lines in 
Figures 2-10a and 2-12a,b with the width axis, versus the non-dimensional parameter 
p-/p+. The data follows a linear increase of roughness with increased dissolution 
independent of kT, except for where interfaces are suspected not to be fractal. For 
low temperatures when p_/p+>0.7, the roughness amplitude A reaches a plateau 
and diverges from the linear trend. Best fit to the linear trend gives A = (0.355 ± 

0.005)p_/p+. 
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Figure 2-15: For interfaces formed at low temperatures A, the roughness amplitude, 
is an increasing function of D, the fractal dimension, as can be seen for simulation 
results for Model I (plotted here as triangles). Thus, when viewed on short length 
scales, interfaces with high fractal dimensions appear rougher and more strongly fluc- 
tuating then interfaces with lower fractal dimensions. Best fit to the linear trend gives 
A = (1.01 ± 0.02)D. The solid line is theoretical prediction given by equation A.11 
using values of L = 104. Deviation of simulation results from theoretical predictions 
are probably due to existence of natural cutoffs for fractal behavior, which are not 
represented in theory. 
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Figure 2-16: After [85]. (A) Demonstrates the lack of correlation between permeabil- 
ity of the samples and their measured total porosity squared, fa, which is conven- 
tionally used for permeability predictions [8]. At low porosities permeability changes 
more then 5 orders of magnitude while fa is virtually constant. In contrast, correla- 
tion with <f>e, the Euclidean porosity, is substantially better, since (f>e coincides with 
the void space relevant for transport calculations. (B) Measured permeability versus 
permeability predicted from equation 2.18. The data cover 7 orders of magnitude in 
permeability. 
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Chapter 3 

Channeling instability of 

up welling melt in the mantle 

Abstract 
We present results of a theoretical study aimed at understanding melt extraction from 
the upper mantle. Specifically, we address mechanisms for focusing of porous flow of 
melt into conduits beneath mid-ocean ridges in order to explain the observation that 
most oceanic residual peridotites are not in equilibrium with mid-ocean ridge basalt. 
The existence of such conduits might also explain geological features, termed replacive 
dunites, that are observed in exposed mantle sections. We show here, by linear 
analysis, that flow in a chemically reactive porous media is unstable in the presence 
of a solubility gradient, such as induced by adiabatic ascent of melt underneath mid- 
ocean ridges. The initially homogeneous flow becomes focused in time to produce 
elongated high-porosity fingers that act as conduits for transport of fast flowing melt. 
This instability arises due to a positive feedback mechanism in which a region of 
slightly higher than average porosity causes increased influx of unsaturated flow, 
leading to increased dissolution which further reduces the porosity. Even in the 
presence of matrix compaction and chemical diffusion the instability is demonstrated 
to be robust. Our analysis also indicates the existence of growing, traveling waves 
which transport and amplify porosity and concentration perturbations. 

3.1    Introduction 

Recent work [37, 68, 28, 27] indicates that upwelling mid-ocean ridges basalt (MORB) 

is in chemical disequilibrium with the upper mantle peridotites that constitute the 

matrix through which it flows. These observations place constraints on melting and 
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melt extraction processes at ridges. In order to produce disequilibrium transport, 

small melt fractions must be efficiently segregated from their source and transported 

to the crust [28, 27, 75, 26]. Since diffuse porous flow of melt along grain bound- 

aries would lead to extensive chemical reaction and erasure of observed trace element 

fractionation, some form of focused flow of melt into channels has been proposed to 

explain extraction of MORB from the mantle [79, 22]. 

The results of our study imply that one of the mechanisms responsible for focusing 

may be a coupled chemical-hydrodynamical instability; uniform upwelling of melt 

flowing through a porous media is unstable when the melt is dissolving some of 

the matrix through which it is flowing and begins to form elongated, high-porosity 

channels. In ophiolites, geological observation of dissolution channels (dunites) in 

chemical equilibrium with MORB, surrounded by mantle peridotites which are not in 

chemical equilibrium with MORB, confirms that this instability may operate during 

melt extraction from the mantle at oceanic spreading ridges [33, 31, 36]. 

Additional mechanisms for melt extraction from the mantle beneath mid-ocean 

ridges could include (1) hydrofracture (e.g., [56]); (2) focused flow of melt in zones 

of localized, active deformation (e.g., [81, 35]); and (3) decompaction into melt-filled 

lenses or veins [73]. Mechanisms 1 and 2 are most probable near and above the brit- 

tle/ductile transition in the mantle, where strain becomes localized into shear zones. 

This is supported by geological evidence that dikes and localized shear zones in the 

mantle section of ophiolites form mostly "off-axis," away from a spreading ridge, near 

the brittle-ductile transition, and not in the adiabatically ascending, partially melting 

mantle beneath a spreading ridge [35, 32]. The third possible mechanism is poorly 

understood at present, and we are not aware of geological evidence supporting such 

a hypothesis. In contrast, the reactive infiltration instability is likely to operate in 

adiabatically upwelling, partially molten, ductile asthenosphere, and there is geologic 

evidence for focused flow of melt in porous dissolution channels in the mantle section 

of ophiolites. 

It has been known for some time [14, 58, 23] that reactive flow through a soluble 

porous matrix may result in formation of finger-like embayments along an advancing 
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reaction front. The mechanism for this instability, termed the "reactive infiltration 

instability" (RII), is simple: when unsaturated fluid flows through a soluble matrix, a 

region with slightly higher than average porosity will tend to have an increased influx 

of fluid, which will increase the rate of dissolution and so increase the porosity even 

further, in a positive feedback mechanism. Increased velocity in localized regions will 

cause lateral convergence of fluid upstream of the front into the high-porosity fingers 

[36]. 

The characteristic wavelengths and growth rates of the front instability are deter- 

mined by three parameters: chemical reaction rate, transport rate, and diffusion rate 

[80]. Reaction and diffusion act to restore the system to equilibrium, while advection 

acts to make it unstable. When diffusion is strong (compared with reaction), it will 

act as the main stabilizing mechanism for this instability. The most unstable wave- 

length in this case is determined by competition between advection (which drives the 

instability) and diffusion (which tends to smooth perturbations). The ratio between 

these parameters is termed Pe, the Peclet number. 

Work on the RII with reaction-controlled smoothing is sparse but generally indi- 

cates that growing fingers are present [24, 80]. Da, the Damköhler number, is the 

ratio between reaction timescale and advection timescale and is the control parame- 

ter in this case. Hoefner and Fogler performed experiments and network simulations 

which indicate a dependence of coalescing or branching of dissolution channels on Da. 

Past work on this subject is not directly applicable to Earth's mantle. The front 

problem as reviewed above is transient; there is no supply of new grains to the system, 

and once the reaction front has propagated through the matrix there are no porosity 

perturbations left. Moreover, the instability (area of disequilibrium) is localized to 

a single interface between two areas of equilibrium rather than affecting the entire 

interior solution (although [23] consider the case of a front of finite width). We see 

no evidence for the existence of such a propagating reaction front in the mantle, no 

evidence of a sharp reaction zone underneath which the mantle is composed purely 

of olivine and above which it is composed of pyroxene. In this paper, we investigate 

instabilities arising in a steady state mantle, where some background porosity, solid 
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and liquid velocities, and mineral composition can be assumed. In this case there are 

no transient solution fronts, and if an instability arises, it will be present in the whole 

region of upwelling and dissolution. 

In the mantle, decompression of ascending melt underneath mid-ocean ridges 

causes an increase in solubility of solid phases with height [72, 36]. Choosing a point 

along the ascent path of the melt, one can see that dissolution at this point increases 

the local concentration of soluble components in the melt but never to the point of 

equilibrium, since upward flow keeps bringing in undersaturated melt. This small 

departure from equilibrium allows an instability to occur, in the same manner as the 

feedback mechanism for the dissolution front described above. However, instead of 

having a fingered front, we expect the instability to occur within the region of melt 

transport wherever there exists a gradient in solubility. 

In this paper we study a porous matrix confined in a box where grains are sol- 

uble, and there is a constant flux of melt from the lower end of the box. As solid 

material dissolves, the matrix is allowed to contract by compaction so as to keep 

the porosity constant in the steady state, with additional grains supplied at the top 

of the box. The solubility of the grains increases linearly with increasing height in 

order to approximate the increase in solubility induced by adiabatic ascent of melt 

decompressing in the mantle. Thermal melting of the solid phases, as distinguished 

from reactive dissolution, is neglected, as is viscous shearing of the solid phases and 

advective heat transport by melt. In what follows, we present the governing equa- 

tions, nondimensionalize them, find a possible steady state, and do a linear stability 

analysis. 

Two interesting unstable features are then shown to coexist: 

1. The system is shown to be linearly unstable to small perturbations, causing 

focusing of flow in elongated high-porosity channels, where the vertical dimension is 

generally much longer than the horizontal dimension, establishing conduits for ascent 

of melt. These channels form provided that the characteristic length for chemical 

equilibration is smaller than a characteristic length for compaction. A calculation 

using characteristic values for Earth's mantle predicts that the condition for formation 
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of the instability is probably met and that the reaction-infiltration instability may 

play an important role in forming conduits for melt extraction from the mantle. 

2. The system gives rise to unstable propagating waves, which in the limit of 

no dissolution are linear compaction waves [76]. The addition of dissolution during 

porous flow gives rise to waves whose amplitude increases with time, providing disso- 

lution features which propagate in space with a finite phase and group velocity. These 

results suggest a mechanism for spontaneous nucleation of "magmons" [71, 78]. 

Finally, we discuss the application of our study to focusing of melt flow in the 

mantle beneath mid-ocean ridges. 

3.2    Formulation of the Problem 

3.2.1     General Equations 

In this section we present a set of equations describing the essence of reactive flow 

through a soluble porous medium with a gradient in solubility. The setup of the 

problem is given in Figure 3-1. Fluid is driven upward by a pressure gradient, entering 

the soluble matrix at z = 0 and leaving it at z - L. With decreasing pressure the fluid 

has increasing ability to dissolve the porous matrix. Since we would like to investigate 

a steady state and deviations from it, we have allowed for compaction, though it is by 

no means crucial for the growth of the instability. Compaction provides a relatively 

simple steady state where dissolution increases the porosity and compaction works to 

decrease it. 

The set of governing equations presented below closely follows the notation and 

form of some previous work on deformable porous media [44, 71, 76, 77]. This ap- 

proach views the coupled solid-fluid system as two interpenetrating fluids with vastly 

different viscosities and is valid for length scales much larger than a pore size. Inertial 

effects have been assumed to be negligible. 

Conservation of mass. Conservation of the solid phase is given by 

dp'{\- *] + V • [,.V(1 - *)] = -£I\, (3.1) 
at i 
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where <f> is the porosity, pt is the solid density in kg m~3, V is the solid grain velocity 

vector and Tj is the mass transfer rate of mineral i from solid to fluid in kg m~3 s~l. 

Conservation of fluid mass is given by 

%^ + V-(/W) = X;i\, (3.2) 
i 

where pf is the density of the fluid and v is the fluid velocity vector. 

Component conservation equations in the fluid phase consist of three contribu- 

tions: diffusion, advection, and a chemical source/sink term: 

^^ + V • Mv*) = V • (DiPfWa) + ru (3.3) 

where A is the diffusion coefficient of component i in the fluid and c,- is the mass 

fraction of dissolved component i in the fluid, with X^c,- = 1. 

Each individual component is also conserved in the solid phase such that 

a/?'(1ft" M + V • [*(1 - «Vcf] = V • [Dtp,(l - flVefl - I\, (3.4) 

where c* and D' are the mass fraction and the diffusion coefficient of component i in 

the solid phase and £i cf = 1. 

If one defines a partition coefficient Ki = <$/<% and assumes chemical equilibrium 

between the solid and the fluid phases, then previous formulations can be rederived 

(e.g., [44]). However, since we are interested in nonequilibrium chemical reactions, 

we shall not follow that practice. 

Mass transfer by chemical reaction. Assuming first-order chemical reaction, 

one can write the rate of mass transfer as 

Ti = -RiA(x, t) [a - ceqi(z)} , (3.5) 

where Ri is the reaction rate constant of component i in kg m~2 s-1, A is the specific 

area (m2/m3) available for reaction, and ^.(z) is the equilibrium concentration of 

mineral i in the fluid given in mass fraction. 

Solubility is taken to be a linear function of height, as approximately the case for 

melt that is adiabatically rising [72, 36]: 

dz 
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where ßi is a proportionality coefficient describing the steepness of the solubility 

gradient with units of m-1. 

Darcy's law. Darcy's law relates the pressure p and the relative velocity between 

the fluid and the solid matrix: 

#v-V) = -^VP> (3.7) n 

where the permeability kj, of the porous medium is usually taken to be a power law 

function of the porosity k^ = (P<j>n/b, with d a typical grain size, n between 2 and 3, 

and 6 a constant (e.g., [8, 88]). p. is the viscosity of the fluid and p is the pressure in 

excess of hydrodynamic pressure. 

Matrix deformation. The closing equation is the momentum conservation equa- 

tion which relates pressure changes to the rate of compaction, viscous deformation of 

the solid phase and body forces acting on the system [44, 76]: 

g.=   »(M+p)+ ±(( - ?,)V • V - (1 - «A»ft» (3.8) 
dxi     dxj   \dxj     dxij     dxj        3 

where 77, £ are the solid phase shear and bulk viscosities and Ap = pt - pf is the 

buoyancy difference. Equation 3.8 states that any change in the pressure field can 

be expressed as the force the solid exerts on the fluid. In a rigid material where the 

grain velocity goes to zero (V -> 0), the viscosity of the matrix will go to infinity 

(£} 77 —♦ 00) and the product will always remain bounded. 

The resulting set of dynamical equations are similar to those introduced by work- 

ers on compaction of molten rocks [44, 76], but here a specification of a dissolution 

mechanism (equation 3.5) with increasing dissolution as a function of height (equa- 

tion 3.6) brings in interesting behavior. Our goal is to study the combined effect of 

dissolution and porous flow, rather than to concentrate on the compaction effects. 

3.2.2    Simplified Equations 

For simplicity, we assume the existence of a fully soluble solid phase composed solely 

of one mineral (c* = 1) which can chemically react with the fluid by dissolution or 

precipitation, with first-order kinetics. Since only one reacting component is present, 

63 



the subscript i will be dropped from here on. The fluid phase is composed of a 

carrier fluid with mass fraction 1 - c. The carrier fluid component does not enter 

the solid phase. The dissolved mineral has mass fraction c and effective reaction rate 

Äeff = RA> wtere we assume that reactive surface area can be taken as constant to 

leading orders. 

The density of the fluid phase is presumed constant as the composition of the melt 

changes due to chemical reaction. This assumption is approximately correct during 

dissolution reactions involving basaltic melt and mantle minerals. The solid phase 

density in a one component system is also a constant. 

Neglecting matrix shear, the momentum conservation equation 3.8 is 

Vp = (( + -V)VC - (1 - <f>)Apgk, (3.9) 

where we have defined a compaction rate as C = V • V and Je is a unit vector in the 

vertical direction. 

Equations 3.1-3.5 and 3.7 can now be written as 

d<f> 
^ + V-V<*   =   (l-^-Äeff(c-ceq(z))/^ (3.10) 

d(j> 
—-fV-(v^)   =   -ReS(c-ceq(z))/pf, (3.11) 

dc 
^_ + ^v.Vc   =   DV.^VcJ-a-cJjyc-^))/^ (3.12) 

h 4 
-tfv-V)    =    -±[(t+fl)VC-(l-i)Apgk (3.13) 

where 3.12 is a result of subtracting 3.2 from 3.3, equation 3.4 is identical to 3.1 in 

the case of c* = 1 and equation 3.13 is a result of substituting 3.9 in 3.7. 

Boundary conditions. In general, equations 3.10-3.13 will require five boundary 

conditions to solve for v, C, ^, and c. Mass conservation requires that the flux 

across a boundary be continuous or balanced by a source or a sink. Flux boundary 

conditions include impermeable, rigid, or "free flux" boundary conditions. When the 

boundary is impermeable, the normal flux is zero either because kj, = 0 or because 

Vp • n = 0, where n is the direction normal to the boundary. The latter condition 

poses constraints on VC • n.  At a rigid boundary C = 0, and so in the absence of 
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dissolution and matrix flow, a rigid boundary has also a constant porosity (equation 

3.10). Finally, a free-flux boundary has VC-n = 0 and yields no resistance to volume 

changes for the normal flux. In addition to the total flux boundary conditions, mass 

conservation poses constraints on flux of individual components in the fluid. These 

constraints translate to specification of concentration of solute in incoming or outgoing 

fluid. 

Nondimensionalization.   In nondimensionalizing equations 3.10-3.13 we shall 

use the following definitions: Assuming zero solubility at z — 0, from 3.6, 

ceq(z) = ßz. 

The change in solubility of the matrix between the bottom and top of a box of size 

L is defined as c$ = ceq(Ir) — ceq(0), and so 

cs = Lß. (3.14) 

The only imposed parameter value in 3.14 is ß, the solubility gradient, known from 

thermodynamic calculations to be of the order of 2 x 10~6 m-1 (an account of calcu- 

lations made by [36] is given in Appendix B). If we choose to investigate a small-scale 

box, then c$, the change in solubility across the box, will be small as well; c& ~ 0.2 

over the vertical extant of decompression melting, roughly the upper 75 km of Earth's 

mantle beneath oceanic spreading ridges. Correspondingly over 100 m, eg is of order 

io-3. 

Porosity is nondimensionalized to a characteristic value, $0) of the order of 10-2 

in the partially molten upper mantle beneath spreading ridges (e.g., [27, 75]), 

<f> = </>0<f)'. 

Permeability is non-dimensionalized to this porosity 

fco = dVS/&. 

Fluid velocity is characterized to be of the order of velocity driven by gravity forces 

such that 

<t>ow0 = —Apg. 
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Characteristic solid velocity is taken as 

Finally, we define a compaction length h to be 

L2      *O, h2 = ^U + 4^/3), 

where h —> 0 is an infinitely weak matrix, which compacts instantly, and h —> oo is a 

rigid medium; h has a typical value of 100-1000 m in the mantle [44]. 

The nondimensional variables will be denoted by primed letters: 

(x,z) = L(x',z') 

t 

C 

= 
L t 

WQCS v 
V = WQv' 

V = VQV 

c = cgc' 

ceq = csz' 

Where the fact that time is scaled to 1/cg is a result of our choice to scale time 

to the characteristic time for change in porosity due to dissolution.  In the limit of 

no gradient of solubility (and thus no dissolution), cs —> 0, and the characteristic 

timescale for change in porosity due to dissolution goes to infinity. 

We now write the nondimensional equations: 

^ + *oV'.V*'   =   (l-foW-Da^ic'-z'), (3.15) 

c^ + V.(^V)   =   -csDa(c'- z'), (3.16) 

dd 1 
csi'-^ + i'V-W   =   -(1 - csc')Da(c' - z') + -i- V • («J'Vc'),       (3.17) 

^(v'-^oV)   =   -^{aVC'-{l-M')kl (3.18) 
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where Da is defined as advection time across a box versus reaction time: 

Da = 2*L. (3.19) 
<PQV>OPf 

Alternatively, if we define the "reaction length," 

<t>QW0pf 

*eff   ' 

= «WLt (3.20) 

to be the length scale over which a perturbation in concentration will equilibrate with 

the solid matrix if it is traveling at speed w0, then the Damköhler number is simply 

the system size in reaction lengths. The reaction length and compaction length are 

the two inherent length scales in this problem. 

The Peclet number is defined as the advection rate versus diffusion rate 

Pe = ^. (3.21) 

Finally, we define a rigidity parameter a, which is a combined measure of the change 

in solubility over one compaction length and the size of a system L relative to a 

compaction length, 

a = — x cs = - x cfc| (3.22) 

where c& = ßh is the change in solubility over one compaction length. Since L can 

be as small as we choose, a is not necessarily small even if c/, is small. When a —► 0, 

the matrix is easily compacted, and when a -» oo, the matrix is effectively rigid. 

We then neglect all terms of order 4>o (since (f>0 is of order of 10~2). The effects 

of retaining terms of order (f>0 when <f>0 < 1 have been shown to be small for many 

problems [7, 70, 76]. In addition, we temporarily neglect diffusion, Pe —► oo, so that 

3.15-3.18 become, dropping the primes, 

d4   =   C-DaP-l{c-z), (3.23) 
ot p, 

c^   =   -V • (*v) - csDa(c - z), (3.24) 
ot 

cs<t>^   =   -<f>y-Vc-{l-csc)Da(c-z), (3.25) 
ot 
<f>v   =   -^n[aVC-fc]. (3.26) 

67 



The value of eg increases with system size, but since we are interested in physical 

systems that have an upper limit in size (the whole region of decompression melting 

« 75 km), cs will be less than or equal to the concentration change over that whole 

region, c& < 0(1O-1), and so will be taken here as a small enough parameter to allow 

for expansion techniques. 

Equation 3.23 tells us that the important timescale in the problem is the timescale 

over which porosity changes. This happens due to compaction on the one hand and 

reaction on the other. Equation 3.24 predicts that the timescale for divergence of 

flux is fast compared to that of changing the porosity, since cs is a small parameter. 

Equation 3.25 predicts that the concentration in the fluid is nearly constant with time. 

Finally, 3.26 tells us that pressure gradients will manifest themselves as gradients in 

compaction rates. 

3.3     Steady State 

We seek unidirectional steady solutions to 3.23-3.26, of the form 

[#*), * (*),**), £(*)] = 

[<t>O(z),w0(z),c0(zlC°(z)} + cs[f(zW(z),c\z),C\z)}, (3.27) 

where w(z) is the fluid velocity in the z direction, w°(z) is the zeroth-order solution 

of the steady state, and csw1(z) is a small parameter correction to it; c$ will be shown 

to be unimportant in the initial steady state solution but is included here in order to 

simplify the subsequent linear stability analysis. 

Equations 3.23-3.26 will be solved with a physical picture in mind: at the bottom 

of the melt column, where melt is entering in equilibrium with its surroundings, 

there is no dissolution and porosity is constant. Thus we require a "rigid boundary" 

condition C = 0, and a chemical constraint on the concentration field at z = 0. 

These lead to the desired constant porosity at z = 0. We also require that fluid flux 

is continuous across this boundary. Taking into account that only three boundary 

conditions are needed, now that diffusion of solute and divergence of porosity have 
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been neglected, the boundary conditions take the form of: 

#0) = 1,  tB(0) = l,  c(0) = 0. (3.28) 

Solutions for the zeroth-order flux are obtained from the fluid conservation equation 

3.24 and the boundary conditions 3.28 

w°<f>° = 1, (3.29) 

From the solute concentration equation 3.25 one then finds that 

c°(z) = ^-{e-DaZ - 1) + *, (3-30) Ua 

where 1/Da is a measure of the thickness of a boundary layer, i.e., the dimensionless 

reaction length (1/Da = LGq/L). 

One can see from 3.30 that nowhere (except for z = 0) does c°(z) = z, the 

equilibrium value. Rather there is always a deviation of the concentration from the 

equilibrium concentration, and when the nondimensional height z >• Leq/L, the 

deviation from equilibrium approaches a constant undersaturation (Figure 3-2). At 

any point along the ascent path of the melt, reaction tends to restore the system to 

equilibrium, but more undersaturated fluid is brought from below to drive the system 

away from equilibrium. This solution suggests that some degree of disequilibrium will 

exist as long as the reaction length is significantly larger than the continuum length 

scale (i.e., the grain scale). When Leq < 0(d), then the system is effectively in local 

equilibrium. Note that we will show that the channeling instability arises even under 

conditions of effectively local equilibrium. 

For simplicity, we shall assume that the nondimensional height is z » Leq/L 

such that any boundary layer effects are negligible. Estimates of the reaction length 

that are reasonable for Earth are sensitive to assumptions about the microscopic 

distribution of melt and solid (see Appendix B). For a range of parameters, Table 3.1 

suggests that the equilibration length may range from much less than a millimeter 

to meters. So even if our system size is of the order of a compaction length, most 

parameter ranges indicate that significant boundary layers are not expected. Thus 
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we can approximate 

c0^)«*-^. (3.31) 

The zeroth-order steady state compaction rate is calculated from 3.23 to be nearly 

constant for z >• Leq/L 

C°(z) = pJ-{e-DaZ - 1) M -El. (3.32) 
Pi P. 

From 3.26 the zero-order steady state porosity is approximately constant: 

(\ -I/« 
ElaDa e~DaZ +1)        » 1. (3.33) 

Finally, from 3.29 the velocity is also approximately constant: 

w°(z) « 1. (3.34) 

The zeroth-order steady state of constant porosity and upwelling velocity is sustained 

by the competition between porosity formed by dissolution and destroyed by com- 

paction. Since compaction rate is the gradient of grain velocity, constant compaction 

means that grains descend with increasing speed as a function of height, which exactly 

balances the net increase in dissolution with height. 

The c$-order terms of the steady state can be easily obtained from 3.23-3.26 using 

the zeroth-order solutions and boundary conditions of ^x(0) = tw1(0) = cx(0) = 0, but 

their detail is of no particular interest here, since in the stability analysis perturbations 

to terms of order eg are negligibly small compared to perturbations to terms of order 

0. 

3.4    Linear Analysis without diffusion 

We shall perform a linear stability analysis of 3.23-3.26 assuming that all variables 

can be expressed as their steady state value plus small deviations: 

W(x, 0, ™'(x, t), u'(x, t), c'(x, t), C'(x, t)] = 

[&z),w(z),0,c(z),C(z)] + e[Äx,<),t2>(x,t),u(x,i),c(x,i),d(x,i)],   (3.35) 
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where e<l and the steady state values are defined by 3.27-3.34. 

Keeping 0(e) terms and discarding terms of 0(c$e, e2), the perturbation equations 

take the following form: 

-   =   C-Da-c, 

_   dw     d4>     du 
dz     dz     dx' 

de 
0   =   — <j> — w — — Dae, 

oz 

w —   (n — 1)$ — a 
dC 
dz' 

u   = -a- 
dC 

(3.36) 

(3.37) 

(3.38) 

(3.39) 

■*■ (340) 

In solving the perturbation equations 3.36-3.40 we shall assume that all variables 

have the form of 

[Ä(x1t))u(x1t)I^)t),c(x1i)1(:(x)t)] = [t2>(z),ü(2!)^(z),c(z))C(z)]e'te^,    (3.41) 

where a is the nondimensional growth rate of the perturbation and / is the nondi- 

mensional wavenumber in the horizontal direction. Equation 3.38 can be rewritten 

using 3.36, 3.39, and 3.40 to be a function of <£, C only 

nDa^- - a(V + Da) 
P> 

4> (aDa^- - l)V - Da 
P' 

C, (3.42) 

where d/dz is designated by the operator symbol V. 

Equation 3.37 can also be rewritten using C, <f>: 

nVl = a(V2 - l2)C, (3.43) 

eliminating <f> from both of these equations, one arrives at a final equation for a single 

variable 

aaV3 + {aaDa - n)V2 - {l2aa + nDa)V + al2Da(npf/pt - a)] C = 0.     (3.44) 

3.4.1    Preview of Solutions and a Simple Scaling Argument 

There are two kinds of instabilities that we find in this system: One is the growth 

of an absolute instability, which is stationary in space and obeys a set of boundary 
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conditions. In this case the growth rate a is purely real and so dissolution features 

will grow pinned in space and will not travel. The other kind of instability is growth 

in time of the amplitude of traveling waves (in this case, a is complex), in which 

we assume a semi-infinite medium and investigate the behavior of traveling waves 

without imposing boundary or initial conditions (these can be imposed in a future 

investigation in order to study the effects of the finite size of the medium on the 

unstable wave solutions). 

How do we expect the most unstable wavelength of the absolute instability to 

behave as we change Da, the control parameter, and should we expect a dominant 

wavelength to emerge at all? As a perturbation of horizontal wavelength Xx grows, 

unsaturated fluid converges laterally toward growing features: when there is no dif- 

fusion only reaction is present to counteract and the deviations from equilibrium, 

we expect that if the time to advect laterally across a perturbation (Ax/u) is longer 

than time for reaction to wipe out the concentration difference (1/R_#), then the 

perturbation will not focus enough unsaturated fluid to keep itself alive and it will 

be damped. This means that perturbations with long horizontal wavelengths com- 

pared to Xeq will not grow effectively. On the other hand, focusing by the longest of 

the fast growing wavelengths will starve the shorter ones, and a dominant horizontal 

wavelength is expected to emerge. By this argument, the horizontal wavelength of the 

most unstable mode should increase with increasing ieq (decreasing Da number). 

Compaction is expected to damp horizontal wavelengths comparable to a com- 

paction length. We propose that if Leq is so large that that the most unstable 

wavelength is of the order of a compaction length, then stationary channels could 

not be maintained in the system. However, the results of our study indicate that 

even when stationary channels are inhibited from growth, the system still exhibits a 

"traveling instability": unstable growth of traveling waves. 

3.4.2    Unstable Stationary Channels 

In this section we investigate the growth of unstable dissolution features by inves- 

tigating the growth rate of vertical modes that obey boundary conditions, termed 
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"absolute instability." 

A solution to 3.44 of the form 

C(z) = Aie
mi* + A2e

m" + A3e
m>' (3.45) 

will exist, provided that 

m3 + (Da _ ^_)m2 _ (ja + riDa)m + pDa^£L _ i) = o, (3.46) 
OUT OUT p,(T 

where »«1,2,3, the three roots of the cubic polynomial 3.46, are either all real or one 

real and two complex conjugates. Equation 3.46 establishes the relationship be- 

tween wavenumbers in the vertical (7711,7712,7713) and horizontal (I) directions and 

their growth rate. In order to find the solution of the linear stability problem (that 

is, to find the growth rate aasa function of the Damkholer number and the rigidity 

a for any given horizontal wavenumber I) we need to specify a set of three boundary 

conditions, which actually correspond to the third-order differential equation 3.44. 

These boundary conditions will constrain the vertical modes mi,m2 and 7713, and as 

a consequence determine a(l, Da, a) via 3.46. 

Boundary conditions for equation 3.44 emerge from the following assumptions: 

(1) There is no dissolution and porosity is constant at z = 0, where the incoming 

fluid is in equilibrium with the matrix. This assumption leads, via 3.36, to a rigid 

boundary condition (C — 0) at z = 0. (2) The z = 0 boundary is impermeable 

to the perturbation, meaning that the flux of fluid normal to the boundary remains 

unperturbed from its steady state value. (3) Using an observation from physical and 

computer experiments [36] that lateral fluxes ahead of the perturbation are negligible, 

we require (from 3.40) a rigid boundary at z = L as well. (Alternatively, one could 

choose a "free-flux" boundary at z = L, which actually acts to amplify the pertur- 

bation by relaxing the restrictive top rigid-boundary condition, and also complicates 

the mathematical presentation somewhat.) The above conditions are equivalent to 

dC 
C(z = 0) = 0,    C{z = 1) = 0,    j-z{z = 0) = 0, (3.47) 

and we seek the conditions under which a nontrivial solution of the form 3.45 exists. 
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The boundary conditions 3.47 tell us that 

/ 

gml      gm2      g*»»s 

\ 

\ /   A     \ Ai (o\ 
A2 

= 0 

/ 
[A3) ^°J 

(3.48) 

mi    m-i    7713 

This has a nontrivial solution if the determinant is equal to zero: 

emi(m2 - m3) + ema(m3 - rm) + ems(mi - m2) = 0. (3.49) 

To find the growth rate as a function of horizontal wavenumber from 3.46 and 3.49, we 

first analytically calculate the three roots 7711,2,3(0-, I, Da, a) of the cubic polynomial 

3.46. Substituting these roots into 3.49, we then obtain an implicit equation for 

a(l, Da, a). Choosing a value for the parameters Da and a, we finally obtain a(l) by 

seeking the roots of the implicit equation 3.49, using a bisection numerical method. 

Numerical solutions indicate that mi,m2,m3 have the form of 1 real root and 2 

complex conjugates so that C(z) of 3.45 can be written as 

C(z) = Bie
m" + B2(?

z cos qz + B3(?
z sinqz. (3.50) 

Before presenting the results of the linear stability analysis, we would like to briefly 

discuss the physics of the problem revealed by writing 3.46 as a dispersion relation in 

which a = c(m, /): 

a = 
nm nl2Da^ 

p. 

am2-P      (m2-/2)(m + I>a)" ^51^ 

The growth rate a is composed of two completely separate parts, one that includes 

a dependence on the rigidity of the matrix, a, but does not depend on the chemical 

reaction, and the second that depends only on the rate of chemical reactions, the Da 

number, but does not depend on the rigidity; a can be expressed as a sum of these 

parts 

a = ac + <TDa, (3.52) 

where the compaction contribution to the growth rate is 

1 71771 
ac = 

a (m2 - Z2) 
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and the chemical reaction contribution to the growth rate is 

nl2Da^- 
aDa = ~(m> - P)(m +Da)' {*M) 

As the matrix rigidity is increased (a —> oo), then a —> ff£>a. This limit strips away 

compaction effects on the instability. In the limit of Da —* 0, a —* oc and only 

compaction effects are left. 

Rigid medium limit. As mentioned previously, in the limit of a rigid medium 

(1/a —» 0), compaction effects are not present, illuminating the physics of the dis- 

solution instability. In Figure 3-3 we present the growth rate a as a function of the 

horizontal wavenumber / for Da = 10 in a rigid medium (1/a = 0). For compari- 

son, the growth rate in a compacting medium with a = 1 is also shown. The choice 

of Da = 10 is given as an example, to demonstrate the qualitative behavior of the 

solution. For a rigid medium any value of Da produces the same kind of behavior 

with positive growth rate peaking at a certain wavelength. Results for a compacting 

medium will be discussed in the next section. 

It should be noted that actually a attains several values for each value of /: these 

correspond to different growth rates of different vertical modes with a wavelength 

Az = 2ir/q where q is denned in 3.50. The first mode has approximately half a 

wavelength (q close to ir) in the vertical dimension of the box and is the fastest 

growing mode. The second mode has close to one wavelength fitted in the vertical 

dimension and grows more slowly. The third mode grows even more slowly, etc. Hence 

only the first mode, the fastest growing one, is plotted on Figure 3-3. The growth rate 

in Figure 3-3 is seen to peak for horizontal wavenumber /max, and so Ax = 27r//max 

is the most unstable wavelength in the system. 

Calculations similar to Figure 3-3 have been made for different Da numbers. Fig- 

ure 3-4a shows the most unstable wavelengths, Xx, as a function of Da, for the rigid 

medium case. As Da increases, Ax is shown to decrease and to approach a power law 

dependence on Da. For Da ^> 1, and spanning 4 orders of magnitude, the nondimen- 

sional dominant horizontal wavelength scales as Ax ~ Jl/Da. In dimensional units 
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this means that 

Ax ~ ^L * Leq. (3.55) 

The increase in dominant horizontal wavelengths of channels with increasing equili- 

bration length (decreasing Da) is as predicted by the "preview of solutions." The 

fact that the lateral extent of channels depends also on the vertical dimension of the 

box is more surprising. We postulate that the vertical length scale L is imposed on 

the perturbations by the fact that channels always span the box vertically. Since the 

vertical mode is coupled to the horizontal modes in 3.46, the horizontal modes are 

forced to feel the system size too. The aspect ratio (Xx/Xz) of the channels decreases 

as Da is increased. Since in dimensional parameters (when Da » 1) Xz ~ L and 

Ax ~ JL * Leq, then the aspect ratio is 

Ax/Az ~ y/Leq/L = yJl/Da, (3.56) 

as seen in Figure 3-4b, and the channels become more finger-like as the equilibration 

length decreases or as the system size increases. 

The growth rate a of the fastest growing horizontal wavenumber /max as a function 

of Da is plotted in Figure 3-4c, where one can see that as Da —> oo, the growth rate 

approaches a constant value, a -> npf/pt, which can be predicted from 3.54. This 

limit is determined by dk/d(f> oc n, the derivative of the permeability with respect to 

porosity. If the permeability decreased with increasing porosity, then the instability 

would not occur and the growth rate would approach a negative constant value. In 

other words, the maximum change in porosity is only related to the rate at which 

flux changes with porosity. 

The increase of a with Da seems counterintuitive at first, since as Da is increased 

the system is closer to equilibrium (equation 3.31 and Figure 3-2). The explanation 

stems from the fact that as Da —» oo, any perturbation in flux is immediately com- 

pensated by chemical reaction bringing the liquid close to local chemical equilibrium. 

In the meantime, the porosity has been lowered further by the strong dissolution, so 

additional fluid flows into the perturbed region. This in turn will result in immediate 

strong dissolution lowering the porosity even further. On the other hand, a low Da 
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number will tend to weaken the growth of channels because the fluid has time to 

redistribute the concentration by lateral advection and thus smooth away gradients 

before substantial dissolution occurs. 

Compacting medium. Numerical solutions for a compacting medium with a of 

order 1 indicate that there exists a critical value for Da. For 

Da > DaCTit = 1/a, (3.57) 

dissolution channels will grow. Once condition 3.57 is violated, there are no solutions 

which obey the boundary conditions 3.47 and dissolution channels do not form. 

Condition 3.57 can be rewritten using the definitions of Da, a and L (equations 

3.19, 3.22, and 3.14): 

Daa = ch^- > 1. (3.58) 
x/eq 

In other words, this term is proportional to the ratio of the compaction length to the 

reaction length. If the compaction length is much larger than the reaction length, 

permanent channels can grow. Otherwise, compaction will become important and 

will act as a stabilizing mechanism, trying to squeeze the channels shut and forcing 

propagation of the instability as waves, as can be seen in the "unstable dissolution 

waves" section. 

Figure 3-3 shows the growth rate for Da = 10, a = 1, so that Da a = 10, not so 

high above the critical value and in the lower range of values of Da X a predicted for the 

mantle, as can be seen in Table 3.1. Growth rates in a compacting medium are shown 

in comparison with results for Da = 10 and a rigid medium, 1/a = 0. Figure 3-3 

shows that the maximum wavelength in the compacting medium is not changed from 

a completely rigid medium and the growth rate is only slightly lower than in the rigid 

case. Compaction is shown to damp the long wavelengths, as expected. 

Eigenfunctions. Here we calculate the eigenfunctions (full z dependent solu- 

tions) of all perturbed fields in the problem (C,<j>,u,v,c) and plot them as contour 

plots, taking a snapshot in time. This demonstrates our claim that the instability is 

characterized by channel-like features and helps one to visualize the spatial distribu- 

tion of melt and porosity. 
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We use 3.50, the three independent boundaxy conditions 3.47, and 3.36-3.41 to 

analytically find the eigenfunctions and thus the full solutions for the perturbation 

variables: 

C(x,z,t)   =   Bj. 
mx-p 

e"* sin qz + e"* cos qz - emi* ilx+<rt 

a 
<f>(x,z,t)   =   Bx- 

n 

'q(q2 + 2p2 + I2 - mlP)      pjm, - p)(p2 - l2)' 

P2 + <72 q(p2 + q2) 

(3.59) 

epz sin qz 

2pl2-m1(p2 + q2 + l2) oz 
 & cosgz 

p2 + q2 

ml-I2 

+—* e 
771! 

,miM + p ("h ~ 2P + J_ 
p2 + g2 TUj 

0t/z+«rt 

u(x, z, t)   =   —iBxalC 

(x,z,t)   =   (n-l)j> + Bi- [((m1-p)p-q2)^'sin qz w 

+ m1g(epz cos qz - emiz)] eilx+at 

c(x,z,t)   = 
PfDa [ 

C-</> 
1    nm,\ npfPDa 

(3.60) 

(3.61) 

(3.62) 

(3.63) 
a m\ - P      p,(m\ - P)(rnx + Da) 

In order to plot the behavior of the perturbation variables as a function of x and 

z, we use the values of mi,p, q, and a calculated numerically for the most unstable 

wavelength, as described in the previous section.  In the surface plots illustrated in 

Figure 3-5 we used parameter values of Da = 100, a = 1. 

Figure 3-5a is a plot of the perturbation in compaction C(x, z, tQ), which is equiv- 

alent to the perturbation pressure. Narrow channels spanning the vertical dimension 

of the box can be seen. The constant pressure boundary conditions force the pressure 

field to achieve a maximum at about three quarters of the way to the top of the box 

and not at the top boundary. Porosity j>(x, z, tQ) is plotted in Figure 3-5b and can be 

seen to have increasing amplitude with increasing height and to achieve a maximum 

amplitude at the top of the box. Disequilibrium undersaturation, -c(x,z,t0), and 

vertical velocity have surface plots very similar in shape to the plot of porosity. 

Within linear approximations, when the system is unstable, the longer the melt 

ascends, the more robust the instability becomes, spanning any given box size. This 

is understandable, since the more disequilibrated the ascending fluid, the stronger the 

driving force for instability. 
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3.4.3    Unstable Dissolution Waves 

In this section we present a different solution to the set of perturbation equations 

3.36-3.40, which is independent of the channel solution and may coexist with it. We 

study simple linear propagating waves in an infinite medium. These are related to 

compaction waves but present a previously unstudied facet of the RII instability, 

unstable traveling dissolution waves. 

When mass transfer between the solid and the liquid is zero (Da = 0), equations 

3.36-3.40 are close to the ones arrived by [76] in his linear analysis of compaction 

driven waves, apart from another time derivative which survived in his divergence 

equation because of the different time scales and therefore different linearization in- 

volved. In the limit of Da —» 0 we arrive at an equation for traveling waves: 

«£_ V*J = 0. (3.64) oz        at 

Assuming wave solutions of the form 

<f> = i4e,'*'x+T,"-<7t), (3.65) 

the dispersion relation is 
nm 

a = 
mt + l2' 

indicating the existence of traveling waves, with a phase velocity Cp 

a      n cos 0 

(3.66) 

Cp K K2   ' 
(3.67) 

where the wave vector is denned by K2 = I2 + m2 and 0 is the angle between the wave 

vector and the vertical, as seen in Figure 3-6a. The phase velocity in the z direction, 

Cpz = Op/ cos 0, is greater than zero, thus linear compaction waves always travel with 

an upward component. (It is interesting to note that 3.64 is identical to the equation 

for planetary Rossby waves that dominate the ocean and atmosphere. Rossby waves 

have westward traveling phases.) 

These results from the zero Da limit are close to the results from [76], in which 

traveling dispersive waves arise from compaction. The waves form due to the increase 
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of melt flux as a function of porosity, and its ability to deform the matrix. Viscous 

resistance to volume change causes waves to disperse. 

We now turn to study the full problem of nonzero Da and seek wave-like solutions 

to the set of perturbation equations 3.36-3.40, 

C(z,x,i)~eI'<m*+,,>+<rt
> 

where m and / are real and a is to be determined from the dispersion relation. A 

single equation similar to 3.46 is found, which in turn can be written as a dispersion 

relation that restricts the growth rate to be 

nl2Da2^- 
P. m 

o = 7—ö—7^r,—TT—~ „v — in 
l_ pfl

2Da 

a     p,(m2 + Da2) 
(3.68) (m2 + l2)(m2 + Da2)        m2 + I2 

This growth rate has an imaginary part, CTJ, and a real positive part, an, indicating 

that if porosity waves were formed in the presence of dissolution, their amplitude 

would increase with time to form "unstable traveling dissolution waves", or "chan- 

nelleons". 

The phase velocity of the waves, Cp, is 

<7r /   1 sin2 6Da^-    \ 

where the wave vector is defined by K2 = l2 + m2 and 6 is the angle between the wave 

vector and the vertical. In the presence of dissolution, the amplitude of the waves 

grows in time due to the positive real part of the growth rate, 

n sin2 6Da2 *- 
a* = K2 cos2 6 +L> <3-7°) 

Here an is seen to be always positive, providing a mechanism for nucleation and 

growth of "magmons", which previously required an initial step perturbation in poros- 

ity in order to nucleate. For Da = 0, an = 0, indicating that compaction waves in 

the absence of dissolution are marginally stable and travel with a constant amplitude. 

The presence of dissolution {Da > 0) brings about interesting behavior of both 

the phase velocity of the waves and the rate at which their amplitude grows. Figure 3- 

6b illustrates Cp and an as calculated from 3.69 and 3.70.   The top panel shows Cp 
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and a% as a function of orientation of the wave front 8 for constant K, Da, and a. 

The phase velocity of planar waves is maximal when they have a diagonal orientation 

but drops to zero for waves that are oriented vertically (9 -> T/2). On the other 

hand, these vertical "stationary channels" are the ones that grow the fastest, as is 

seen from <r(9), and are actually the collapse of the traveling wave solution to the 

stationary channel solution obtained in the previous section. The bottom panel of 

Figure 3-6B shows Cp and an as a function of Da for constant K, 9, and a. The 

maximum in phase velocity corresponds to K cos 9 = Da, while maximal growth 

rate occurs for Da —> oo, similar to the maximal growth rate for the stationary 

channels. Compaction-dissolution waves are dispersive, as expected for waves which 

arise partly from compaction [76], and the long wavelengths both travel and grow the 

fastest. Like the linear compaction waves of 3.64, these waves always have an upward 

phase velocity. Waves propagate with a finite phase velocity even in the absence of 

compaction. They appear to travel diagonally because vertical wavelengths that are 

shorter than the system size (m > 0 or 8 < ir/2) imply that at some point in space, 

upwelling fluids in high-porosity regions encounter an obstacle of low porosity, forcing 

the fluid to chew its way up with a diagonal component of velocity. 

3.5    Finite Diffusion 

Diffusion in a porous medium is a result of hydrodynamic dispersion and molecular 

diffusion. Dispersion, in most cases, is associated with larger diffusion coefficients than 

molecular diffusion. Both have the effect of of causing an initial sharp concentration 

gradient to spread out with time. This section addresses the question of whether a 

finite diffusion rate will smooth out gradients in the concentration field to a point 

where the channeling instability will not be able to grow. 

3.5.1    Predictions 

It is probable that perturbations smaller than a diffusion length will be smoothed 

out. When diffusion is weak, and a diffusion length is smaller than the most unstable 
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wavelength determined by reaction (as calculated for the no diffusion case above), 

diffusion will only act as a short-wave cutoff. When diffusion is strong, and a diffusion 

length is longer than the most unstable wavelength determined by reaction alone, it 

will allow for unstable growth but modify the dominant horizontal wavelength, forcing 

it to become longer than a diffusion length. This is because, as seen in Figure 3-3, 

all wavelengths are unstable in the presence of reaction alone (in the rigid case) and 

when short waves are damped, long wavelengths can become the fastest growing in the 

system. It follows that for strong diffusion, the growth rate will be lowered compared 

to the case with no diffusion. 

3.5.2    Simplified Calculations 

We present here a somewhat simplified linear analysis for the finite diffusion case. We 

allow for diffusion only in the horizontal direction, since allowing for vertical diffusion 

adds higher order derivatives in the vertical direction, complicating the vertical struc- 

ture of the equations beyond the point necessary to obtain well-behaved solutions to 

the stability problem. This approximation is probably justified, since the vertical 

melt velocity is believed to be much larger than diffusion rates. However, one should 

note that available experimental diffusivities in silicate melts, quoted in Table 3.1, do 

not include effects of dispersion. 

Solving the perturbation equations 3.36-3.40 with a finite value for 1/Pe, 3.46 will 

have the form 

m3 + (Da + l2/Pe - — )m2 - (I2 + — )m + \2Da!^- - l2(Da + l2lPe) = 0. (3.71) 
aa acr pta 

The growth rate is again decomposed into compaction and reaction parts 

a = ac + aDa (3.72) 

where the compaction contribution to the growth rate is 

1      nm 

and now 
nl2Dapf 

aDa " ~{m*-P){m + Da + P/Pe) (3J4) 
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is the diffusion-reaction contribution to the growth rate. In the limit of Z -> oo, 

aDa _» 0, as expected since diffusion will tend to damp the growth of short wavelength 

perturbations. 

We use boundary conditions 3.47 to solve 3.71 following the same numerical pro- 

cedure outlined in the "unstable stationary channels" section. Figure 3-7 demon- 

strates the effect of adding diffusion to the no-diffusion solution obtained for the rigid 

medium. Generally, diffusion acts to reduce the growth rate of the instability and to 

shift the most unstable wavelength to become longer than in the no diffusion case, as 

predicted. 

Figure 3-8 shows the most unstable wavelength and its growth rate for a constant 

Da = 10 and a varying Pe number. The qualitative behavior is as predicted: for 

weak diffusion (Pe 3> Da, which corresponds to the condition when equation 3.17 can 

be considered diffusionless) the most unstable wavelength and its growth rate remain 

nearly the same as the case with no diffusion. For Pe < Da the dominant wavelength 

Ax increases with increasing diffusion length (decreasing Pe) Xx oc (1/Pe)1/4, and the 

growth rate is reduced but remains positive. 

Thus we conclude that when diffusion is strong or when the Pe number is of the 

same order of magnitude as the Da number, the addition of diffusion can alter channel 

spacing and lower the growth rate but cannot inhibit the instability from growing. 

When diffusion is weak (Pe > Da), it can be neglected altogether. 

3.6    Discussion 

The results of this work show the potential for an existence of a channeling instability 

in Earth's upper mantle. The instability stems from combined chemical and hydro- 

dynamical effects. Melt decompresses as it ascends through the mantle, increasing its 

ability to dissolve the surrounding matrix. A small perturbation in porosity allows 

a larger volume of unsaturated fluid to flow, thus increasing dissolution and further 

increasing porosity in a positive feedback mechanism. 

We consider a model system incorporating porous flow, dissolution, and matrix 
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compaction effects and find a steady state formed by the competition between disso- 

lution and compaction. Linear stability analysis is then performed, predicting that 

long, narrow channels may spontaneously form. The emerging horizontal wavelength 

Ax is shown to depend on the chemical equilibration length Leq and the vertical ex- 

tent of the system L. For chemical equilibration lengths that are smaller than the size 

of the system (Da > 1), A« = 2.534y^eqL. For a system of the size of the melting 

region, L « 75 km, channels will range from 10 cm wide, when Leq ~ 10-7 m, to 

nearly a kilometer wide if Ieq ~ 10 m. Our linear prediction of channel width is 

in agreement with (1) postulated vein sizes needed to successfully segregate the melt 

in order to see observed chemical signatures [79], and (2) the size of dunite dissolu- 

tion features found in field observations [10, 19, 62, 55, 34]. This further strengthens 

our belief that the channeling instability plays a crucial role in focusing of melt and 

determining the geochemical composition of upwelling liquids and residual mantle 

peridotites. Channels formed by the reactive infiltration instability may provide the 

means for extracting melt out of the viscously deformable upper mantle. 

If the chemical equilibration length is too long, comparable to the compaction 

length, formation of the instability is inhibited by compaction. A coexisting solution 

predicts unstable growth of elongated traveling porosity and concentration waves 

that exist under all conditions. The exact criterion for stationary channels to grow 

is chh/Leq > 1. We test whether this condition is met in Earth's mantle, using a 

range of numbers explained in Appendix B and tabulated in Table 3.1. Equilibration 

lengths range from <1 mm to 10 m, and we use ß = 2 x 10~6 m"1; chh/Leq ranges 

from 0(1) to O(106) when the compaction length is taken as 1000 m and from O(10-2) 

to O(104) when a compaction length is taken as 100 m. Parameter values that are 

believed to be characteristic of Earth's mantle are thus mostly in the regime that 

allows for rapid growth of stationary channels. 

The effect of diffusion is also investigated. When diffusion is strong enough, it will 

cause an increase in channel spacing and a decrease in channel growth rate. However, 

this will not inhibit the channels from growing. 

The forming channels are elongated and span the vertical box size. Their ampli- 
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tude increases with height, thus showing increasing chemical disequilibration as liquid 

ascends in the melting column. When Da is high, chemical disequilibration is small, 

but dissolution of channel is most efficient. Hence soluble phases may become reduced 

in volume or completely exhausted. When channels thus become stripped of soluble 

phases (i.e., stripped of pyroxene but not of olivine), melt flowing through them will 

be effectively isolated from equilibration with these phases. Since the channels span 

the system vertically, they can bring to the surface melt that has not equilibrated 

with its surroundings since it began its ascent at the bottom of the melting column. 

This may explain why MORB is out of chemical equilibrium with upper mantle peri- 

dotites [28] and includes chemical signatures from the bottom of the melting column 

[37, 68]. 

Channels formed as a result of this instability should be identifiable in the geo- 

logic record. Their contact relationships should be indicative of replacement of host 

peridotite as a result of selective dissolution of more soluble phases (i.e., pyroxene). 

Additionally, minerals in dissolution channels should be close to equilibrium with 

MORB and therefore will have very different minor and trace element compositions 

from the same minerals in surrounding peridotite. In fact, these characteristics are 

observed in dunite bodies within the residual mantle peridotite section of the Oman 

ophiolite [32]. 

However, we emphasize that the results of the present study may not be directly 

applicable to the mantle. In particular, the morphology of dissolution channels arising 

from this instability, developing over finite length scales and timescales, cannot be 

predicted from linear stability analysis. It is possible that a much richer behavior 

emerges due to non-linear effects. For example, space or time dependent behavior, as 

tentatively sketched in Figure 3-9. Additionally, the multicomponent melt migration 

process in the earth with the inclusion of advective heat transport and background 

melting effects is more complicated than the problem studied here and is a topic for 

ongoing studies. 

In addition to the formation of stationary dissolution channels, another coexist- 

ing linear solution indicates the existence of traveling compaction-dissolution waves, 
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whose amplitude increases with time. These unstable waves, pockets of undersatu- 

rated melt in a high porosity region, will transport increasingly undersaturated melts 

to the surface even when the matrix is too weak to support stationary channels. They 

may also aid in explaining the production and growth of "magmons," compaction 

waves previously thought to be generated by an initial step in porosity. 
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Variable Symbol    Value         Notes 

Solubility gradient 
Linear dissolution rate 
Solid density 
Reaction rate constant 
Grain edge length 
Total surface area 
Porosity 
Solid/liquid surface area 
Volume fraction of soluble phase 
Permeability exponent 
Melt fraction 
Solid upwelling rate 
Background fluid velocity 
Equilibration length 
Damköhler number (L=100m) 
Diffusion coefficient 
Peclet number (L=100m) 
compaction length 

ß 2 x lO^m-1 1 
lO"12 - 10-8 m s-1 2 

P* 3 x 103 kg m-3 

R 10-9 - 10-5 kg m-2 s-1 

d 10-4 - 10"3 m 
103 - 105 m2/m3 3 

<f> 10-3 _ io-2 4 
s (1 - 3) x IO"1 5 

io-2 - io-1 6 
n 2-3 7 
F 0.05 - 0.2 8 
VQ IO"10 - IO"9 m s-1 9 
w0 IO"9 - IO"6 m s-1 9 

Leq IO"7 - 10 m 9 
Da 109 - 1 10 
D IO"" _ 10-lO m2 s-l 11 
Pe 108 - 103 12 
h 100 - 1000 m 13 

Table 3.1: Characteristic Values Believed to Be Applicable to Earth's Mantle. For a 
detailed discussion, see Appendix B. Notes: l.[36, 35]. 2. higher dissolution rates are 
from [12] and [41], and low dissolution rate is from [96]. 3. using d, cubic grains, and 
[90]. 4.[27, 75]. 5. in fraction of total surface area. 6. i.e., fraction of pyroxene [34]. 
7. [90]. 8. fraction of solid mass that has melted. 9. see Appendix B. 10. using range 
of Leq given above. 11.[25]. 12. using w0,D given above. 13. [44]. 
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Figure 3-1: Setup of the problem: Fluid is driven upward by a pressure gradient, 
entering the soluble porous media at z = 0 and leaving at z = L. Owing to decom- 
pression, the fluid has increasing ability to dissolve the solid matrix. The matrix is 
allowed to contract by compaction and thus counteract to some degree the effects of 
increasing dissolution. 
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Ceq=Z / 
A 

AC~l/Da 

Figure 3-2: Nondimensional steady state concentration as a function of height, drawn 
as a solid line. After a narrow boundary layer (« 1 reaction length), the deviation of 
the steady state concentration from the equilibrium value (represented by a dashed 
line), approaches a constant value Ac ~ l/Da. 
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Figure 3-3: Nondimensional growth rate a versus nondimensional horizontal 
wavenumber /, for Da = 10 in a rigid medium (1/a = 0), and in a compacting 
medium with a = 1; /max indicates the fastest growing wavenumber. Comparing 
the growth of unstable channels in a compacting and a rigid medium, one notes that 
the most unstable wavelength is hardly altered and its growth rate is only slightly 
lowered due to the stabilizing effect of compaction. Compaction does, however, damp 
the long-wavelength perturbations. This effect leads to a critical Da for existence of 
the instability in a compacting medium. 
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Figure 3-4: (a) The fastest growing horizontal wavelength, Ax = 2ir/lmax, derived 
from plots similar to Figure 3-3 with different Da numbers in a rigid medium. For 
Da > 1, and spanning 4 orders of magnitude, A* oc 1/Da. (b) Aspect ratio of 
channels, q/l = Xx/Xz, as a function of Da in a rigid medium. Perturbations become 
more finger like as Da number is increased, (c) Growth rate of /max as a function 
of Da in a rigid medium. The system becomes increasingly unstable with increase in 
Da and reaches a constant limit for Da —* oo. This limit is set by the derivative of 
permeability with respect to porosity. 
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NO.5 

Figure 3-5: Eigenfunctions for a compacting medium, Da = 10, a = 1 (a) Pertur- 
bation pressure as a function of x and z. Dark shading indicates negative values; 
light shadings indicate positive values. Owing to the boundary conditions, pressure 
perturbations are forced to zero at the top of the box, thus attaining a maximum 
amplitude at z « 3/4. (b) Porosity, vertical velocity, and concentration, which look 
very similar, are plotted as a function of x and z. These variables have increasing 
amplitude as a function of z and attain a maximum at z — 1. 
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Figure 3-6: (a) Schematic drawing of a planar wave, with wave vector K2 = I2 + m2, 
oriented at angle 8 to the vertical. The phase velocity is the velocity at which the 
phases propagate, (b) (top) Growth rate a-n and phase velocity Cp of compaction- 
dissolution waves as a function of the planar wave orientation 8. Calculations were 
made using K = 10, Da = 10, and a = 1. Phase velocity is maximum when the wave 
is at some angle to the vertical and is zero for vertical stripes. Although these stripes 
do not propagate, they grow the most rapidly, as seen from cr(8). The stationary 
vertical stripes are the collapse of the plane wave solution to the unstable channels 
solution, (bottom) The ax and Cp as a function of Da. Calculations were made 
using K = 10, 8 = 7r/4 and a = 1. The maximum in phase velocity is for waves 
with K cos 8 = Da. At this point a rapid transition from nearly zero growth rate to 
maximum growth rate can be observed. 
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Figure 3-7: Growth rate a as function of horizontal wavenumber I for a rigid matrix 
with Da = 10 for various diffusion coefficients. Solid line is the growth rate in the 
case of no diffusion, replotted from Figure 3-3. Solid circles are the linear stability- 
analysis results for a rigid system with weak diffusion, Pe = 100. Strong diffusion 
with Pe = 10 is shown in crosses. The horizontal wavelength (= 27r//max) of forming 
channels becomes larger in the presence of diffusion and the growth rate is somewhat 
lowered, but the nature and the robustness of the instability are not changed. These 
results are in agreement with scaling arguments. 
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Figure 3-8: The fastest growing horizontal wavelength, Ax = 27r//max, derived from 
plots similar to Figure 3-7 with different Pe numbers, for a rigid medium with a 
constant Da = 10, plotted by solid circles. In the case of strong diffusion, when 
Pe < Da, \* oc 1/Pe. On the same plot we show the growth rate a by open squares, 
to be unaffected by diffusion when Pe is large but to be reduced when diffusion 
becomes important. Channels will grow (<r > 0) for all diffusion rates. 
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Figure 3-9: When high-porosity channels form, the solid-liquid surface area per unit 
volume is reduced and the characteristic equilibration length of the system will in- 
crease. This means that the wavelength of the channels will increase as well (from 
equation (55)). If we also consider the increase in melt velocity with height, we get 
an additional increase in Z>eq. Thus we can tentatively propose the following picture: 
narrow channels that form deep in the melting column will act as the background 
porous structure for a higher level and, due to the increase in horizontal wavelength 
with equilibration length, will coalesce to form an interconnected network of high 
porosity tubes similar to the upside down "fractal tree" proposed by [22]. 
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Chapter 4 

Simulations of flow and reaction 

in porous media 

Abstract 

I present a 3D computer model that simulates flow and reaction through a porous 
medium, by solving the relevant mass conservation partial differential equations and 
Darcy's law. Reaction generally results in re-organization of the porous media. Dis- 
solution causes focused and highly correlated flow patterns, while deposition reduces 
correlations in the spatial arrangement of porosity, so as to cause dispersion of flow. 
Three specific experiments relevant to melt migration in the mantle are also per- 
formed. The first simulates conditions in upwelling melt beneath mid-ocean ridges, 
where I find formation of high permeability channels as predicted in Chapter III. The 
second experiment simulates conditions for upwelling melt beneath intra-plate vol- 
canos or magmatic arcs, where melt crystalization is expected. Simulations of such 
conditions indicate increasingly diffuse and homogeneous porous flow, even when flow 
was initially channelized. The third experiment is of melt changing from corroding 
the matrix to depositing in the matrix. In the transition zone a low porosity cap 
forms over a high porosity region, with rapidly increasing overpressurization. The re- 
sults have implications for degree of chemical equilibration of melt in different regions 
as well as for dominant modes for melt migration (i.e., whether porous channels or 
periodically forming cracks will appear). 

4.1    Introduction 

In this paper I present a newly developed 3D numerical model of flow and reaction 

through a porous media, and initial results from it. There are not many studies about 
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coupled flow and reaction, even less about deposition, and none of the existing ones 

handles both deposition and dissolution. This work aims, first of all, to study the 

evolving nature and statistics of reacting porous media and to establish the differ- 

ences between dissolution and deposition as opposite processes. The secondary aim 

of this work is to perform some initial numerical experiments mimicking different 

environments for upwelling melt in the mantle, and compare the results to existing 

observations and predictions. 

The method of study involves solving a set of partial differential equations, which 

describe mass conservation of fluid and rock, and Darcy's law. This mathematical 

description is applicable to scales above the pore size, where one can define an average 

porosity and permeability. The resulting set of coupled equations is solved on a 

computer (a SUN workstation) using a Multi-grid method [61] to obtain the pressure 

field. This efficient method enables inclusion of up to 643 nodes on a workstation, 

where memory availability limits simulations of larger boxes. 

Before deciding upon a macroscopic partial-differential-equation solver I have at- 

tempted two additional numerical methods, which I will spend a brief paragraph to 

describe, in the dim chance that it will save somebody some work in the distant fu- 

ture. First I constructed a version of the lattice-gas method [66] in which particles 

flow and react on a lattice. This method proved to be well suited for microscopic sim- 

ulations. The initial results were easy to obtain and provided qualitative indicators, 

but I was unable to continue into quantitative, large scale studies, due to size limi- 

tations. The description of the model and the initial results are presented in [36]. I 

then proceeded to implement a network model in which a reactive fluid flows through 

pipes of various sizes and may change the radius of the pipes by chemical reaction. 

At first glance this method seemed most promising, but it is limited by the need to 

solve for transport of solute. This is done either by particle tracking methods, which 

limit the size of the system to be investigated similar to the Lattice-Gas and other 

microscopic methods, or by differential equation solutions, which have the limitations 

of macroscopic models. Thus I concluded that for quantitative study of large scale 

organization a macroscopic model that solves a set of partial differential equations 
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would provide the most useful tool. 

In the first section of this chapter I mathematically describe reactive flow through 

a porous medium, similar to the macroscopic description in Chapter III [3], but here in 

the rigid medium limit. In the second section the computer method is described and 

validated. In the final section I present two different sets of experiments of dissolution 

and deposition in a porous media. 

The first set of experiments constitutes a basic study of 3D flow and reaction 

in a porous media. The statistical and general properties of the porous media are 

investigated, after a dissolving or depositing fluid have flown through it. Results from 

dissolution and deposition are compared to one another and to the initially randomly 

constructed media. 

The second set of experiments is aimed at mimicking (very simplisticly) conditions 

of melt ascending beneath (1) mid-ocean ridges, similar to the situation described 

in Chapter III, and (2) subduction-related magmatic arcs or intraplate hot spots. 

Geochemical observations on lavas and mantle samples indicate that melt ascending 

beneath mid-ocean ridges is out of chemical equilibrium with surrounding mantle [28, 

27], while observations of lavas and mantle samples from hot spots and arcs generally 

indicate extensive reactions (for review see [36]). Such geochemical observations are 

accompanied by geological observations of different structures for melt transport in 

the two cases: replacive dunites in the case of mid-ocean ridges and fractures for intra- 

plate basalt. This set of experiments is a continuation of work initiated in [36] and 

Chapter III, in which the chemical and geological observations are explained by the 

different chemical interactions that occur between melt and the surrounding matrix: 

In midocean ridges, dissolution channels form when melt upwells in close to adiabatic 

conditions [36, 3, 32]. In hot spots and arcs, melt must pass through a conductively 

cooled tectosphere and so crystallize, possibly resulting in an overpressurized and 

finally cracked media [36]. In addition to checking the flow patterns in these two 

different cases, I also simulate the transition between dissolution and deposition, 

(a transition likely to happen as melt passes from a an adiabatic to a conductive 

geotherm) and discuss the likelihood and position of fracture initiation. 
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All simulations were performed with relatively high reaction rates and low diffu- 

sivities so as to maximize observed trends and minimize simulation times. The sets 

of experiments are by no means exhaustive. For discussion of the effect of varying 

the different control parameters see Chapter III, [80, 67] and [9]. 

4.2    Formulation of the problem 

The description derived below is close to previously used forms [14, 57, 3], but here 

an analytical description of deposition is added. The mathematical formalism uses a 

conventional continuum approach suited for description of phenomena that occur at 

and above the Darcy scale. 

4.2.1     General Equations 

Mass conservation equations are: 

dP,{\ - <f>) 
dt 

dpf<f> 

=   Er«'. (4.1) 

m   +v(P/v^)   =   -Er<> (4.2) 

dt 

^^ + V.(^vc)   =   V • [DiprfVa] - Ti, (4.4) 

=   V-[£>>.(!-$Vcf] + I\, (4.3) 

where (f> is the porosity, p. and pf are the solid and fluid density respectively in kg 

m~3, and I\ is the mass transfer rate of mineral i from fluid to solid in kg m-3 s~ 1. D{ 

and D' are the diffusion coefficients of component i in the fluid and solid respectively 

and Ci,c'i are the mass fractions of component i in the fluid and solid respectively, 

with£,c,- = l and EiC? = 1. 

Equations 4.1 and 4.2 describe the conservation of total solid and fluid mass re- 

spectively. Equations 4.3 and 4.4 describe the conservation of each mineral component 

in the solid and fluid phase respectively. 

Assuming first-order chemical reaction kinetics, the rate of mass transfer of com- 
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ponent i between fluid and solid is 

I\ = ÄM;(x,i)te-cegi), (4.5) 

where Ri is the reaction rate constant of component i in kg m-2 s"1 and Ai(x, t) is 

the effective specific surface area (m2/m3) available for reaction of component i. ceqi 

is the equilibrium concentration of mineral i in the fluid, given in mass fraction. ceqi 

may be a function of position and time, as in the case for varying temperature or pH 

conditions. The specific surface area, Ai(x,t) is also, in general, a complex function 

which has different values depending on whether a mineral is dissolving or depositing, 

and may depend on the presence of other minerals. Here I shall approximate Ai(x, t) 

in a simple form. The effective specific surface area for dissolution, termed Ai "', 

is a function of the amount of mineral i available for dissolution at the pore-grain 

interface. Since M\ = p,c'i(l — <f>) is the mass fraction of solid component i, 

A?"(c', <f>) « MT « (cti(l - <f>))2'\ (4.6) 

Equation 4.6 arguably applies to dissolution and not to deposition, since dissolution is 

limited by the mass of soluble material in the solid phase, while deposition is generally 

independent of the amount of mineral already existing in grains, but depends only 

on the total surface area exposed in the pores. Since the volume fraction occupied 

by pores is <f>, the specific surface area associated with this volume fraction will be 

approximately 

Ap{4>) oc f*. (4.7) 

The closing equation is Darcy's law, which relates the pressure p to the flux of the 

fluid: 

^v = --Vp, (4.8) 

where /i is the viscosity of the fluid, p is the pressure in excess of hydrodynamic 

pressure, and k is the permeability. 

The relation between the permeability and the geometry of the matrix is important 

for correct modeling of the non-linear process involved in this study, but a clear 

analytical description is not obvious.   For example, it is possible that by selective 
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deposition (or dissolution) in strategically positioned necks the porosity will be hardly 

changed, while the permeability will be highly altered. Never the less, in the literature 

(e.g. [8, 88]) permeability is usually taken to be a power law function of the porosity 

*(*) = <PF/b, (4.9) 

with d a typical grain size, n usually between 2 and 3, and b a constant. This relation 

is not very good for low porosities, but is used in this study for lack of a better 

description, and as a first, even though not perfect, step. This approximation can be 

partially justified when one realizes that the discretized version of the set of equations 

presented above (4.1-4.9) is identical, when n = 2, to the set needed for solving for flow 

and reaction through a network of tubes. Thus, similarly to a network model, each 

node (in the network model representing a tube) by itself obeys 4.9, but the global 

arrangement in space may result in macroscopic porosity-permeability relations that 

are different than 4.9. 

Boundary conditions. In general, equations 4.1-4.9 will require either pressure or 

flux boundary conditions on both the total fluid mass and on each individual fluid 

component. Initial conditions on <j> and c; are also needed in order to determine the 

spatial and temporal evolution of the six (in the case of a single soluble component 

in 3D flow) unknowns v, p, <f> and c. 

4.2.2    Simplifications 

For simplicity, I assume that the solid phase is composed of two components: a soluble 

component which can chemically react with the fluid by dissolution or precipitation, 

and a insoluble component. The soluble material has mass fraction c, in solid and 

reaction rate R while the non-soluble component has mass fraction 1 — c, in solid and 

its reaction rate is 0. Diffusion within the solid will be considered negligible. The 

fluid phase is composed of a carrier fluid with mass fraction 1 - c and a dissolved 

component with mass fraction c. The carrier fluid does not enter the solid phase. 

The density of the fluid and solid phases are presumed constant as the composition 
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of the melt changes due to chemical reaction. The subscript i will be dropped from 

this point on. 

In this simplified case we can use 4.3 to write the mass conservation equation of 

the non-soluble phase, 

(1 - c.)(l -<f>) = Vn. = canst. (4.10) 

From 4.10, 4.6 and 4.7 we write the effective surface area as a function of the porosity 

only: 

' (<t>f ~ <t>)2/3   if c<ce, A(<f>)oc (4.11) 
<f>2'3 if c > ceq 

where <f>f = 1 — Vnt would be the final porosity if all soluble material is dissolved. 

Equations 4.1-4.4 can now be written as 

^ + V-(v^)   =   -T/Pf, (4.13) 

^ + *v-Vc   =   DV.(<f>Vc)-(l-c)T/pf, (4.14) 

r   =   RA(4)(c-ceq), (4.15) 

where 4.14 is a result of subtracting 4.2 from 4.4 and equation 4.3 has been used to de- 

termine the reactive surface area for dissolution, and will not be followed individually 

anymore. 

4.2.3    Nondimensionalization. 

In nondimensionalizing equations 4.11-4.15 and 4.8, I define characteristic effective 

permeability as IZQ = cPfä/b, and characteristic flux as <f>ow0 = koPo/fJ-L, where L 

is a length scale of interest, and po is the characteristic pressure difference across L. 

A characteristic concentration is defined as CQ = ceq, which scales the concentration 

c to the spatial and temporal average of the equilibrium concentration ceq. This 

definition reduces to Co = ce, when the equilibrium concentration is constant. Finally 

a characteristic surface area for reaction will be defined as AQ = <^0' . 
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I next define the nondimensional variables, denoted by primed letters: 

x   =   Lx' 

<f>   =   faß 

p — Pop 

V = w0v' 

t = 
w0 

c = CQC1 

^1 = co/(x,i) 

h = M'j 

Lastly, two controlling parameters emerge in the problem: 

RLAo 
Da = Ü- (4.16) 

<PoW0pf K       ' 
„       w0L 
Pe = -f-. (4.17) 

Equation 4.16 defines the Damkholer number, which measures the advection time 

scale versus the reaction time scale in the system. Equation 4.17 defines the Peclet 

number, which measures diffusion time scales versus the advection time scales in the 

problem. 

Using the non-dimensional variables and parameters, 4.8, 4.9 and 4.11-4.15 can 

be rewritten, after some algebra, as: 

W Pi 

V-(rVp')   =   co^^-Dar (4.19) 

dd 1 
*'lt ~ rVlP'' VC'   =    p^V-(^Vc')-(l-coc')Dar' (4.20) 

r   =   A(<f,')(c'- f(x,t)) (4.21) 

At*      \ (^W)2/3   if^ </(*,*) M<t>) oc {       \        ' 4.22) 
( 4>'213 \id>J{x,t) 

This constitutes the basic set of equations for this study. From this point on primes 

will dropped with reference to the non-dimensional variables. Equation 4.18 describes 
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the temporal evolution of porosity due to reaction. Equation 4.19 describes total fluid 

conservation which is simply the Laplace equation for the pressure. Equation 4.20 

states that mineral concentration changes due to reaction, diffusion and advection. 

Finally Equation 4.21 and 4.22 are used to evaluate the mass transfer rate. 

4.3    Description of numerical model 

The numerical method for solution of 4.18-4.22 uses an explicit partial differential 

equation solver which is implemented on an evenly spaced grid with grid-spacing A 

in each of the respective dimensions, and time steps of size Af. The model uses wrap- 

around boundary conditions in the x and y directions, and allows for flux or pressure 

specifications in the z = 0, L boundaries. The model is implemented as follows: 

1. Given 3D concentration and porosity fields, find the mass transfer rate V ev- 

erywhere using 4.21 and 4.22. 

2. Given pressure or flux boundary conditions and V, find the 3D pressure field 

from equation 4.19. The solution of such Laplace equations are most time and 

memory consuming, and constitute the step that limits the size of the problem 

to be solved. The model uses the recently developed Multi-Grid Method [61], 

which requires a number of operations of order n, where n is the number of 

grid points. This method is able to solve larger systems than direct solvers that 

need a number of operations of order n3, but unlike the direct solvers it cannot 

resolve high frequency features. 

3. Operator splitting [61] is then used to solve for the new solute concentration, 

from equation 4.20. The advective contribution is calculated using the "cor- 

rected up-wind scheme" [74], a stable advection scheme with courant condition: 

At|Q|/A < l/\/3 where Q = <£nVp. The corrected upwind scheme has small 

implicit diffusion parallel to the flow direction. The source (or sink) term due 

to chemical reaction is given by T, calculated in step 1. The diffusion step is 

implemented using a first-order explicit space-centered scheme [61] (stable for 
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6A2/A < Pe). The stability requirement is easily met for the small diffusivities 

(large Pe) which I use. 

4. Finally the new porosity field is obtained from 4.18, and the loop returns to 

step 1. 

In the validation tests and the experiments described below, fluid is driven by a 

pressure gradient from z = 0 to z = L, with constant pressure boundary conditions. 

4.4    Testing of numerical model 

In order to test the model I had to concentrate on simplified cases with many symme- 

tries, due to the lack of theoretical work in more complex cases. First, each feature 

of the model was checked by itself. Advection and diffusion of an initial Gaussian 

were tested to give the analytically predictable profile. This test did not incorporate 

reaction. Reaction in a uniform porous media was tested against the analytically pre- 

dicted decay to equilibrium of the concentration field. This test did not incorporate 

advection. 

For a dissolving porous media there are a few cases which incorporate both reaction 

and transport, and for which there are analytical predictions. I have tested my model 

against a few of these cases. The test I present is a comparison of the numerical 

and predicted dispersion curves for the reactive infiltration instability. The analytical 

results are derived for reaction and flow in a two dimensional porous media, and 

therefore this test constitutes the most demanding of all available analytical ones. 

For deposition in a porous media there are no available analytical calculations 

which incorporate both reaction and advection, and so I will only present a test 

of reaction in a uniform porous media, and rely on the fact that deposition and 

dissolution are nearly symmetrical process, and that the combined non-linear effects 

of the reaction and transport were shown to be consistent with theory in the previous 

test. 
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4.4.1    Test 1: The reactive infiltration instability in 2D 

When an undersaturated fluid is forced to flow through a partially soluble porous 

media, a propagating reaction front will form [14, 57]. Upstream of the reaction front, 

where all the soluble material has already been dissolved, the concentration will be 

that of the incoming undersaturated fluid. Downstream of the reaction front, the 

fluid will be in chemical equilibrium with the solid (i.e., saturated) and no dissolution 

will occur, provided that Da > 1. The position of the front is unstable to small 

perturbations: if the initial permeability is slightly higher in a certain region, this 

region will entrain more unsaturated fluid and dissolve more rapidly, thus increasing 

its porosity even further in a positive feedback mechanism. [57] present a detailed 

analysis of this instability in 2D J. They predict that for small perturbations, the 

front will develop scalloped fingers that grow in an unstable manner with time, such 

that any initial sinusoidal perturbation in position will grow as 

C(x, z, t) = z(t) + £ Am coS(mx)e»W, (4.23) 
m 

where u(m) is the growth rate of the wavelength 2-KJm and ((x,z,t) is the position 

of the front, with average height z(t). The resulting dispersion relation is a function 

of the diffusion, advection, and reaction rates. [57] assume that ceq = CQ = const, 

co/pt « 1 and pj = p,. Non-dimensionalization is performed with t = L(w0c0)''
1't'- 

Their assumptions are analogous to having very fast reactions (i.e., Da -> oo), or 

an infinitely thin reaction front. The analytical prediction for the linear growth rate 

cj(m) in this case is: 

w(ro) = +?' [a + (1 - 7)m - (a2 + 4m2)1/2] (4.24) 

where vf is the final fluid velocity after the front has passed, <f>b is the porosity 

before the passage of the front, a = Pe*vf and 7 = <i>bhl4>fkf where kb, kj are the 

permeabilities before and after the passage of the front. 

To measure cj(m), I performed a set of simulations, where flow enters a box (33 

nodes per side) at z = 0 with initial concentration c = 0. An initial front between <&, 

1There is a alight mistake in their paper in the basic fluid conservation equation, but since this 
mistake is of order e it does not effect the final result. 
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and 4>f was placed at ((x, z, 0) = z + A sin(mxx). The fluid was allowed to react with 

the porous media and the power spectrum of the porosity, S(m, t), was obtained. The 

amplitude of the 3D power spectra in the seeded wavelength, S(mx,t), was checked 

as a function of time. To derive u>(mx) from such measurements, I use 4.23 in the 

following formula: u>(mx) = ]n(yf(S{mXi t)/S(mx, 0)))/(ico), where CQ is a parameter 

needed to convert between the two diiferent time scales used in this paper and in [57]. 

The results are plotted in Figure 4-1. 

4.4.2    Test 2: Deposition in uniform porous media 

Since I do not know of any existing analytical prediction for combined flow and 

deposition in a heterogeneous porous media, I performed a primitive test for flow and 

deposition in a uniform porous media. Supersaturated fluid fills a uniform porosity 

box, where I allow for wrap-around boundary conditions in z as well as the usual 

wrap around conditions in x and y. In this case one expects no spatial concentration 

gradients. For copf <C p„ the change in porosity at short time scales is negligible 

(from equation 4.18). In this case equation 4.4 has a solution of 

r*\     !            ,—ADat. 
c(t) = 1 - exp ( ). (4.25) 

Figure 4-2 shows that simulation results follow theoretical predictions closely. 

4.5     Simulations and results 

In this section I present various types of computer experiments and their results. The 

experiments are exploratory, since there is very little previous quantitative knowledge 

about combined reaction and flow through porous media, and what exists is mainly 

aimed at dissolution. Many of the results will be quantified by measuring the correla- 

tion function, c(r), of different variables in the system. The correlation function in all 

experiments is obtained using the Weiner-Khintchine theorem (e.g., [11]). Practically, 

this is done by taking the inverse fourier transform of the 3D power-spectra of the field 

of interest (e.g. porosity or flux). c(r) is then normalized to 1, and ranges between -1 
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and 1. The correlation function gives a quantitative indication of the probability of 

finding identical values of the investigated scalar field at 2 different points separated 

by a distance vector r, as explained in more detail in the introduction of Chapter II. 

4.5.1    General dissolution and deposition 

This section presents a set of simple experiments. Reactive fluid flows through a 3D 

porous media, which is wrapped around in the z as well as the usual x,y directions. 

Porosity in the initial configuration is white Gaussian noise around a mean. The 

fluid in these experiments is kept artificially from reaching chemical equilibrium in 

order to observe the effect of long term reaction. The fluid is kept undersaturated 

(in the dissolution experiments) or supersaturated (in the deposition experiments), 

by readjusting the mean concentration at each time step to a given constant value. 

Figure 4-3 shows average porosity within the box as a function of time for (al) 

dissolving porous media and (bl) clogging porous media. Porosity asymptotically 

approaches <f>j in the dissolving case and 0 in the depositing case, following equation 

4.22. Figure 4-3 also shows final 2D sections of the flow field, parallel to the flow 

direction, for a porous media subjected to (a2) flow and dissolution and (b2) flow and 

deposition. 

Dissolution. When an undersaturated reactive fluid flows through a rock, one ex- 

pects focusing of flow due to processes that preferentially dissolve regions of high 

initial permeability, similar to the reactive infiltration instability. 

Figure 4-4 show the evolution of flux (al) and porosity (a2) histograms and the 

porosity correlation function (a3) due to dissolution. The porosity histogram (Figure 

4-4(a2)) after 700 time steps of dissolution shows only a slight increase in variability 

from its initial state. On the other hand, the flux histogram (Figure 4-4(al)), shows 

a great amount of variability compared to its initial configuration. This can be 

explained by the rearrangement of the pore distribution in a correlated way, so as to 

form elongated high permeability pipes with high flux, alternating with regions of low 

permeability and low flux. The contrasting fast and slow regions of flow thus reflect 
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the variability in permeability due to spatial organization of porosity, rather than due 

to the actual change in porosity itself. This can be clearly observed in Figure 4-4(a3) 

as an increase in the correlation function of the porosity in the direction parallel to 

the flow (lag in z), which means that high porosity is likely to be found below or above 

other regions of high porosity while low porosity regions will be found adjacent to 

other low porosity regions (i.e., elongated pipes). This increased correlation function 

is most prominent along the flow direction, indicating that the medium has become 

anisotropic. 

Deposition. An interesting and not well understood problem is how flow reorga- 

nizes as deposition clogs the porous media. Qualitatively, one expects that since fluid 

flows faster in regions of high permeability, it will tend to remain further from equilib- 

rium in those regions. In the case of deposition this means that fluid retains a higher 

supersaturation in the high permeability regions, and thus will be able to deposit 

more in these regions. This process is expected to cause a negative feed-back: any 

highly permeable regions are choked by increased deposition, and the flow becomes 

more diffuse with time. 

This phenomena is observed in our simulations. Most of the deposition occurs in 

the high permeability regions, where the fluid tends to clog the smaller necks, thus ef- 

fectively blocking initially preferred paths for flow, and causing flow to become diffuse 

and uniform, as observed in the spiky flux histogram in Figure 4-4(bl). On the other 

hand, the porosity distribution is not much narrower than in its initial state (Figure 

4-4(b2)). It is thus probable that reduction of correlations in the permeability path 

are responsible for flow dispersivity and uniformity, as opposed to homogenization of 

porosity. The correlation function of the porosity, shown in Figure 4-4(b3) demon- 

strates that correlations along the direction parallel to flow are somewhat reduced at 

small z lag. 

The reduction of correlations, and the possible formation of negative correlations, 

can be explained in the following way: since deposition is a function of the flux of 

supersaturated material, it will occur most rapidly in the main paths for flow. These 
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paths are regions of connected, relatively high permeability, present in the initial 

random arrangement. Deposition in these paths will reduce the upstream permeabil- 

ity and preferentially cause regions of clogged low permeability to be connected to 

downstream regions of high permeability, which may result in negative correlations. 

4.5.2    Dissolution and deposition in mantle flow 

In this section I present results from simulations directly aimed at better under- 

standing flow and chemical patterns of melt upwelling in the mantle, under various 

conditions. 

The first experiment is for fluid increasingly able to dissolve the porous matrix 

through which it is flowing. This problem is set to mimic aspects of melt flow in 

upwelling mantle beneath mid-ocean ridges, where decompression of ascending mantle 

causes an increase in solubility of solid phases with height [72, 36]. A 2D linear 

compacting system was studied in Chapter III [3] and showed the formation of fast 

flowing melt channels. The 2D non-linear problem (in the rigid limit) is investigated 

here. 

The second experiment is for melt ascending while crystallizing. [36] asserted that 

when melt ascends beneath magmatic arcs and hot spots volcanos it will first dissolve 

the surrounding mantle, similar to the situation in midocean ridges. But, in contrast 

to midocean ridges, it will encounter a wide region of conductively cooled, static 

mantle below the crust, and so the melt will cool to below the pyroxene saturation 

point and begin to crystallize. Numerical simulations are set to investigate flow 

patterns in such crystallizing regions. 

The third experiment investigates the transition zone between dissolution and 

crystallization. Zones of transition between high and low permeability have been 

proposed for "magma pooling" and overpressurization, and as probable places for 

fracture initiation [86, 56, 36]. Kelemen et al. [36] emphasized that these are par- 

ticularly likely where melt-rock reaction undergoes a transition form net dissolution, 

under adiabatic conditions, to net precipitation, under conductively cooled conditions. 
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Melt fraction increasing upstream (adiabatic conditions). The experimental 

conditions are such that fluid enters at z = 0 with concentration c = 0. The enter- 

ing fluid is in equilibrium with the surrounding matrix. The equilibrium saturation 

increases linearly upstream, so that CQ(Z) = z/L, where z is the height and L is the 

length of the box, (in A). The local concentration is thus a balance between reaction 

and advection of undersaturated material form downstream, as explained in Chapter 

III. For Da >• 1 the fluid maintains a close to equilibrium concentration, but dissolu- 

tion occurs rapidly leading to channel formation as predicted in Chapter III for 2D. 

Figure 4-5a shows a vertical slice (parallel to the flow direction) of the 3D flux field af- 

ter channels have been established by the dissolution process. Figure 4-6a and b show 

the correlation function in the direction parallel and perpendicular to the pressure 

gradient, respectively. Flow is focussed and thus exhibits strong correlations in the 

direction parallel to flow. Weak correlations are found in the perpendicular direction. 

These represent formation of channel-like features, with a characteristic size larger 

than the grid spacing. The medium is anisotropic, with vertical high permeability 

channels spanning the box. 

Melt fraction decreases upstream (conductively cooled conditions). Fluid 

enters at z = 0 with solute concentration c = 1. At the entering height the fluid is in 

equilibrium with the matrix. The equilibrium saturation decreases linearly upstream 

so that Ceq(z) = 1 — z/L where z is the height and L is the length of the box. This 

renders the fluid constantly, very slightly, supersaturated with respect to its height. A 

simple calculation, similar to that presented in the calculation of the steady-state of 

Chapter III, can be made to prove this. The initial porosity field for this experiment 

is not a random distribution, but instead the "channelized" porous media formed in a 

previous dissolution experiment. (The section shown in Figure 4-5a is a section from 

the initial flow field in this experiment.) 

Figure 4-5b shows a slice parallel to the flow direction of the 3D flux field after 

800 time steps. The initial channels of flow have been completely wiped out, except 

for remnants at z = 0, where the fluid enters at equilibrium and so no reaction 
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occurs. Figure 4-6a and b show the correlation function in the direction parallel 

and perpendicular to the flow, respectively. Deposition has completely destroyed the 

initial correlations (channels of flow) obtained by dissolution, so as to cause uniform 

and diffuse flow. In Figure 4-5b one can also observe the reduction in flux variability 

reminiscent of the results presented in Figure 4-4(bl). 

The transition to Pyroxene saturation. To simulate the transition from dis- 

solution to deposition, fluid enters at z = 0 with c = 0. The matrix is increasingly 

soluble until z = L/2 by having c,., = z/L. At z = L/2, cKq begins to decrease lin- 

early and ceq = 1 — z/L. The z profile of the equilibrium saturation and the resulting 

concentration profile (averaged over x and y, after 400 time steps) are drawn in solid 

line and stars respectively in Figure 4-7a. Melt is undersaturated (c < c,.,) for more 

than half of the box, i.e. concentration profile attains a maximum at a higher z than 

does the equilibrium concentration. The vertical distance between the maximum in 

concentration and the point of inversion in equilibrium concentration is determined 

by the Da: The deviation from equilibrium is a result of the competition between ad- 

vection of downstream undersaturated material and equilibrating chemical reaction. 

As reaction rates increase (Da —> oo), the concentration profile approaches that of 

ce„ but z(max(c)) will remain greater than z(max(ceq)) for any finite flow rates. 

Vertical sections of the resulting 3D flow pattern are presented in Figure 4-8. Flux 

channels form in the dissolving region and extend somewhat into the precipitation 

region. Pressure sections, on the other hand, vary only along the z direction, and 

appear constant in i and y. Thus only z profiles of pressure are shown. 

Figure 4-7b shows average (over x,y) porosity and deviation from hydrostatic 

pressure as a function of z. Melt fraction (porosity, plotted in circles) increases to 

half the box, after which a rapid decrease in porosity occurs so as to form a low 

permeability cap over the molten region. The peak in porosity corresponds to the 

largest deviation of c from ceq, attained at the peak of ceq. 

The deviation of "measured" pressure from hydrostatic pressure is plotted as a 

solid line in Figure 4-7b.   Overpressure attains a maximum at the same height as 
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does c(z), i.e., the point of transition from net dissolution to net deposition. As 

discussed above, the vertical distance between the two points, the point where porosity 

is maximized and the point where overpressure is maximized, is determined by the 

Da, and decreases as Da —> oo. In this rigid matrix, the difference in porosity 

between the molten and the crystallized regions, and the overpressure associated with 

the transition, continue to increase with time. The consequences of such a physical 

scenario will be discussed in the conclusions. 

4.6    Summary and conclusions 

In this study I have presented a new three-dimensional computer model which ef- 

ficiently models Darcy-scale aspects of flow and chemical reaction, both deposition 

and dissolution, in a porous medium. Simulations of generic and specific process were 

performed, and the following conclusions for flow and reaction at high Da and Pe 

numbers, are reached: 

4.6.1    General conclusions. 

Reaction in porous media at high Da causes spatial rearrangement of the porosity 

in the matrix with relatively little effect on the shape of the porosity histogram. 

Dissolution results in formation of alternating high and low permeability regions 

parallel to the main flow direction, while deposition acts to decrease correlations 

in porosity and diffuses the flow (Figure 4-4). It is possible that reactive flow is 

accompanied by a change in the relationship between porosity and permeability (i.e., 

in dissolving systems global permeability will be higher than predicted by a measured 

average porosity, while in depositing systems global permeability will be lower than 

thus predicted). However, in my simulations this effect is not observed, and the total 

permeability of the system is well predicted (within 1%) by equation 4.9, using the 

average porosity within the whole box. 
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4.6.2    Relevance to melt migration in the earths mantle 

The simulations in this section followed closely the proposed different scenarios in 

[36]. The results of simulations agree with predictions in that paper. 

Melt ascending beneath midocean ridges, on an adiabatic geothermal gra- 

dient. It is currently believed that the earths mantle rapidly ascends below mid- 

ocean ridges in near adiabat conditions and remains above the point of pyroxene 

saturation for most of its ascent path, continuously increasing in liquid mass [72, 36]. 

Under such conditions, simulations show that three dimensional, elongated channels 

of fast flowing, undersaturated melt form spontaneously. The vertical channels span 

the box size, similar to the two dimensional linear predictions obtained in Chapter 

III. 

As detailed in Chapter III and in [36] and [32], the spontaneous formation of such 

channels may explain the observation of chemical disequilibrium between midocean 

ridge basalt and surrounding depleted peridotite [28, 27]. Some kind of channels have 

long been assumed in order to explain the geochemical observations [79, 22], but a 

formation mechanism for channels in the viscously deformable parts of the mantle 

was not known. 

Melt ascending and cooling on a conductive geotherm (intra-plate volcan- 

ism and subduction arcs). Beneath hot spot volcanos, ascending melt follows 

an adiabatic path to the base of the tectosphere, but will cool at shallower levels. 

Thermal models of subduction zones indicate that melt initially heats and then cools 

as it ascends through the mantle wedge. In both cases, PT diagrams as shown in 

[36], reveal that melts rising through the upper mantle will first increase and then 

decrease in mass. 

I find that when liquids increasingly crystallize, flow becomes diffuse and homo- 

geneous, even if initially focused into channels. This result is in agreement with the 

chemical signature of basalts and mantle samples obtained from such regions ([36] 

and references therein), which show a closer approach to equilibrium and slower melt 
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extraction rates, in contrast with midocean ridges. 

Simulations show that, at least in a rigid medium, a low porosity cap will form at 

the transition from dissolution to crystallization. The sharp transition from a region 

with high melt fraction to a region of low permeability causes rapidly increasing over- 

pressurization. Such regions, whose depth in the mantle it may be possible to calculate 

from thermodynamic considerations, will be candidates for periodic hydrofracturing, 

due both to the high melt fraction and the overpressurization [36]. 

A relevant question concerning the initiation of hydrofractures in this region, is 

whether compaction forces can dissipate the excess pressure faster than the rate at 

which it increases due to a buildup of a low permeability cap. It has been argued that 

in steady-state, compaction will dissipate any stress differences larger than Apgh, the 

buoyancy forces obtained over a compaction length h [81]. This calculation is not true 

in a medium constantly changing due to chemical reactions. Compaction, which acts 

to dissipate the overpressure, will be competing against crystallization, which acts 

to build up pressure. The faster of these two processes will determine the resulting 

overpressure. 

The above findings are consistent with geological evidence for dunite dissolution 

features found in mantle structures in ophiolites preserved from adiabatic upwelling 

beneath an oceanic spreading ridge [32], and fractures filled with products of crystal- 

lized, cooled basalt found in mantle sections preserving structures formed within a 

conductive geotherm. 

4.6.3     Open question and future investigations 

The model presented above assumes a constitutive porosity-permeability relation 

given by equation 4.9. This is the first point for suggested improvement, since as 

stated previously, it is possible to deposit at strategic small necks, with a very small 

effect on porosity but a tremendous effect on permeability. 

How to improve 4.9 is not immediately clear. One way is to use particle based 

models, such as the Lattice-Gas model, where porosity-permeability relations emerge 

physically, without a need for analytical predictions.  But these microscopic models 
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axe limited in size. Macroscopic modeling can be improved by imposing constitutive 

laws which take into account the changing situations in low porosity and assume a 

power n that increases as porosity is decreased in equation 4.9. Another possibility is 

to use only a fraction of the porosity (which can be termed the connected porosity) 

in the flow calculations. 

Reactive infiltration instability in 3D. Similar to the 2D reactive infiltration 

instability and as a consequence of laboratory experiments in 3D [17], one expects 

the reactive infiltration instability to form in 3D, but it's form is yet to be fully 

understood. In experiments, the shape of the reaction front has been observed to 

have scale-invariant fingers under certain conditions [17]. 

Model simulations of the front propagating in 3D show that the front is unstable 

for small porosity perturbations, but forming fingers lock on the initial noisy distribu- 

tion of the porosity. Increased diffusion is expected to change finger size, but I have 

not yet succeeded in determining the behavior of this instability in parameter space. 

It is necessary to simulate such a phenomena on larger boxes in order to observe 

possible scale invariant behavior. 

Melt flow in the mantle. The channeling instability in a gradient of solubility 

may have interesting forms in 3D, which need to be investigated as a function of the 

various parameters. This part of the study is complicated in a rigid medium, because 

of the lack of a steady state, and so future addition of compaction is proposed. Such 

tests using a numerical code that incorporates compaction, as well as reaction, will 

also investigate the transition from dissolution to precipitation and determine the 

maximum pressure obtained as a function of competing rates. 

An additional point to study is temperature effects. In the earths mantle, the 

equilibrium concentration, and so the transition from dissolution to precipitation, are 

a function of temperature as well as pressure. For example, fast flowing melt in a 

high permeability channel may be still hot enough to be able to dissolve the solid 

matrix, while the neighboring regions may have already cooled enough to precipitate, 
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resulting in focusing of the upwelling melt in narrow chimneys with solidified walls, 

similar to results of the experiments reported in [36] and [82]. In the future, it would 

be interesting, though somewhat difficult due to the additional length and time scales 

involved, to incorporate temperature effects into the existing model. 
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2d Linear stability theory 
theory in solid, experiments in circles 

10.0 20.0 30.0 
wavenumber (in units of 1/dx) 

40.0 

Figure 4-1: Growth rate as a function of wavenumber for the reactive infiltration 
instability. Results from model simulations in circles, analytical prediction from linear 
stability from [57] (equation 4.24) in solid line. Simulations were performed on a box 
with 333 grid points. Parameters used are: (f>f = 2, <j>h = 1,7 = 0.125, Vf = 0.4, a = 80 
and Da = 40. The highest wavenumbers correspond to features close to the grid 
spacing. Such high frequency features are not well resolved by partial differential 
equation solvers such as this model. 
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Figure 4-2: A supersaturated fluid reacting and flowing in a uniform media. Equation 
4.25 describes the time evolution of the uniform concentration towards equilibrium. 
Parameter set used: Da = 10,A = 0.63, <£ = l)Co = 0.1, At = 0.0125. Prediction 
from 4.25 in solid line. Simulation results in circles. 
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Figure 4-3: Average porosity as a function of time for (al) dissolving porous media 
and (bl) porous media undergoing deposition. Porosity in both cases approaches a 
limiting value: in a dissolving matrix (f> —» <f>f (the porosity when no more soluble 
material is present), and in a depositing porous media <£ —> 0. Time is counted in 
units of initial time steps. (Time stepj in model are changed according to stability 
requirements, where for larger fluxes one needs to take smaller steps.) The bottom 
half of the figure shows 2D sections (taken parallel to z, the main flow direction) of 
the final flow fields, obtained in (a2) dissolving and (b2) depositing porous media, 
lighter (darker) shadings correspond to higher (lower) than average fluxes. (a2) shows 
formation of elongated flow structures parallel to flow direction. (b2) shows more dif- 
fuse flow structures, although isotropy exists because of the driving pressure gradient 
along the z direction. 
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Figure 4-4: Histograms of flux and porosity, and correlation functions of porosity in 
a dissolving and "clogging" porous media. For the histograms the mean value of the 
variables was subtracted to enable comparison. Bin size is constant. The correlation 
functions of porosity shown are of lags along the z direction. Experiments performed 
on a 333 node box with Da = 20, Pe = 103 and v0 = 0.5. Initial configuration 
in solid line. Final configuration in stars, a. Dissolving porous media: (al) The 
variability in flux after 700 time steps is wide compared to the initial variability, as is 
expected for formation of focused, non-uniform flow with regions of fast and slow fluid 
velocity. (a2) The change in porosity variability between t = 700 and t = 0 is nearly 
unnoticeble. This is expected when permeability is changed due to organization of 
the porous medium and formation of long-range correlations, and not due to changes 
in porosity variability. (a3) Porosity correlation function in the direction parallel 
to flow is considerably enhanced, consistent with (al) and (a2). b. Deposition in 
porous media: (bl) The variability of the flux after 600 time steps is much smaller 
than in the initial configuration, which means that the flow becomes more uniform 
with time. (b2) The decrease in porosity variability is less prominent, as expected 
when permeability is changed due to rearrangement of the porous media to form anti- 
correlations (i.e. preferential clogging in regions close to high permeability regions). 
(b3) Deposition results in reduced correlations in porosity which act to diffuse and 
homogenize the flow. 
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Figure 4-5: Vertical slices of the 3D flux field in a reacting porous medium with a 
gradient in solubility. Box is of 333 grid points. Parameters used: Da = 20, Pe = 
103,uo = 0.5. (a) Dissolving porous medium with solubility increasing with z so that 
fluid is slightly undersaturated everywhere. Initial porosity distribution is random. 
The slice presented is taken after 700 time steps. Elongated channels are formed, with 
a large variation in flow velocities, (b) Using the configuration obtained by dissolution 
as the initial condition, the slice presented is taken from a porous media after 800 
time steps of deposition. Flux channels have been obliterated. Flow is uniform with a 
small variability around the mean. (Some trace of channels can be observed at z = 0 
where there is no reaction). 

123 



(a) (b) 

-0.2 -0.2 
0 5 10 15 0 5 10 15 

lag in dz lag in dx 

Figure 4-6: Correlation function of the flux field in a reacting porous medium with 
a gradient in solubility. Box is of 333 grid points. Parameters used: Da = 20, Pe = 
103,uo = 0.5. The initial condition for dissolution is a random porous medium. The 
initial condition for deposition is the channelized porous media from the dissolution 
experiment, (a) Correlation functions parallel to flow direction (lag in z): Flux is 
highly correlated in the dissolved matrix, represented by circles, while it is completely 
uncorrelated in the deposited porous media (in plusses), i.e. the channels caused by 
dissolution have been preferentially clogged, (b) Correlation functions perpendicular 
to flow direction (lag in x): In a dissolved porous media (in circles) flow is somewhat 
correlated in the direction perpendicular to the forcing, i.e. pipes have a width larger 
than the grid spacing. These correlations are seen to be reduced by deposition (in 
plusses). 
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Figure 4-7: Results from simulations of the transition from dissolution to deposition, 
after 400 time steps. Porosity was initially homogeneous and random with average 
value of 1. Parameters are as in Figure 4-6. Plotted are various z profiles obtained by 
averaging over x and y. (a) Equilibrium concentration as a function of z, in solid line, 
and resulting concentration in stars, the fluid is increasingly undersaturated until a 
certain point, after which it is slightly supersaturated. The vertical distance between 
the maximas in concentration and in equilibrium concentration is determined by the 
Da number, (b) The porosity profile, in circles, has evolved to form a highly perme- 
able region below a low porosity cap. Deviation of resulting pressure from hydrostatic 
pressure is plotted in solid line. While porosity attains a maximum at the same point 
as the equilibrium concentration, the overpressure attains a maximum at the tran- 
sition between dissolution (undersaturation) and deposition (supersaturation). The 
deviation between these points is thus also dependent on Da. 
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Figure 4-8: Two different vertical sections of a 3D flux field in a transition simulation. 
Flux channels span the dissolution region and may affect the crystallizing region 
as well. The <f> = 1 contour, which represents the transition point, is drawn as a 
horizontal solid line. 
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Chapter 5 

Conclusions 

Motivated by vaxious observations in sedimentary and igneous rocks, this thesis 

presents a study of changes that occur in a porous medium subjected to flow and 

chemical reaction. Coupled flow and reaction operate during sedimentary rock for- 

mation, during upwelling of melt in the mantle, at the core-mantle boundary, and in 

various other technological and geological settings. 

The coupled physical process influences the geometry of a porous matrix at both 

the microscopic and the macroscopic levels. At the smallest scale flow may have a role 

of keeping the system out of equilibrium so as to allow for growth and existence of 

non-equilibrium features. At larger scales flow may act as a "long-range messenger", 

causing large-scale organization during cementation or dissolution. 

This thesis reaches two levels of conclusions: The first level is that generic aspects 

of flow and reaction change the statistical characteristics of a porous medium, with 

dissolution and deposition having qualitatively opposite effects (Chapter IV). It may 

be possible in the future to use the statistics to obtain quantitative constraints on 

the processes that different porous media have undergone. It is also clear that flow 

and reaction effect permeability, in a way which needs to be further studied. Future 

studies require deeper understanding and quantification of the interaction between 

the scales. 

On the second level this thesis suggests that coupled flow and reaction are sig- 

nificant forces in geology: This generic physical process may be responsible for the 
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observed fractal structures on the pore scale of sedimentary rocks (Chapter II, also 

in [1]), for formation of channels in the mantle (Chapter III, also in [3], and [36, 32]), 

and for controlling modes of melt extraction (Chapter IV and [36]). The coupled 

process may influence rates of lava flow and sea floor accretion as well as volcanic 

eruptions. Future extension of these studies to more realistic conditions, both via 

experiments and through theory, is necessary before these new results can be used in 

a quantitative fashion. 
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Appendix A 

Theoretical prediction of the 

roughness amplitude (Chapter II) 

In this appendix we calculate a theoretical value for A(D), the prefactor in equation 

2.17, for interfaces formed by Model I. Our calculations will use the characteristics of 

the 'single-step' model and the fact that power spectra of self-affine interfaces follow 

a power-law [87]. 

In the calculation of A(D) the first step is to define a two-dimensional discrete 

Fourier transform H(p,q) of the height h(m,n), where m and n are the discrete x 

and y positions respectively: 

L      L 

L2 

The inverse transform is 

#(?>*) = 7J E E h(m,n)e-^^^yL. (A.l) 
m=l n=l 

h(m, n) = £ JT H(p, qyMrm+<*n)IL^ (A 2) 
p=l q=\ 

Since in Model I the height difference between adjacent sites is always constrained 

to be of amplitude one, the sum of the squares of the slopes in the x direction is 

£ £ \h(m,n) - h(m - l,n)|2 = L\ (A.3) 
m—ln=l 

By substituting the inverse Fourier transform for h in the above 'sum-rule' one obtains 

2 E E l#(P> 9)|2(1 - COB (2wp/L)) = 1 (A.4) 
p=l g=l 
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The same calculation in the y direction gives 

2 E E \H(p, q)\\l - cos (2*q/L)) = 1, (A.5) 
p=l g=l 

and by adding A.4 and A.5, we obtain 

E E l^(P. ?)l2(2 - cos (2**/L) - cos (Z*P/I>)) = 1- (A.6) 
p=l g=l 

On the other hand, the width, as defined by equation 2.4, is also related to the power 

spectrum by the Parseval-Rayleigh relation: 

I^4EE \Km, ») - W = E E \H(P, 9)|2 (A.7) 
m=l n=l p=l g=l 

Thus A(D) can be extracted from equations A.7 and 2.17: 

A\D) = L«D-V L£ E \H(p, q)\2. (A.8) 
p=l  q=l 

For self-affine interfaces the power spectrum scales like a power-law, 

\H(M)? = AXD)((^)\(^)y-\ (A.9) 

where A'(D) is the amplitude of the power spectrum [87]. 

Equation A.8 can be rewritten using \H(p,q)\2 from equation A.9: 

A{Df = A'(D)LV>-* £ E ((^)' + (^)2)°~4- <A-10' 

^4'(D) can be derived by substituting the power spectrum given in A.9 in A.6 to give 

a final form for the square of the roughness amplitude 

A2(D) = L2(D-3) L^=X ^«=1 [q + P j      (A m V   ' Ep'=xEj=1(2-cos(27rg/L)-cos(27rp/L))(g2 + p2)D-4-     <   '    ' 

The sum can be evaluated numerically, to yield a theoretical value of A(D), which is 

shown in Figure 2-15. Our calculations of A have not fully converged and show a very 

weak dependence on L, with L values taken up to 104. The integral approximation 

of the sum in equation A. 11 shows however no dependence on L, and therefore full 

convergence is expected as L —> oo. 
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Appendix B 

Discussion of Parameter Values 

for the Mantle (Chapter III) 

Table 3.1 illustrates the derivation of a range of Damköhler numbers which may- 

be applicable to porous flow of melt in the mantle. The results are tabulated in 

two ways, in terms of an "equilibration length," and in terms of Damköhler number 

for a fixed system length scale of 100 m. In our study, the equilibration length, 

Lea = <t>Pfu>o/Refi, is the length over which fluid will advect before equilibrating 

with its surroundings. 

Critical input parameters in determining equilibration lengths for the mantle are 

the crystal dissolution rate and the melt flow velocity. We present a broad range 

of possible values, because the estimation of effective dissolution rates, porosity and 

fluid velocity are so uncertain. Several studies have measured dissolution of mantle 

minerals in basaltic melts at upper mantle pressures and temperatures [41, 12, 96]. 

All of these indicate that measured dissolution rates are diffusion controlled, and 

thus depend on the diffusivity of the dissolving species and the width of a chemical 

boundary layer around the dissolving crystal. The first two studies emphasized re- 

sults for relatively "well-stirred" melts, with narrow chemical boundary layers, while 

[96] attempted to minimize convection and mixing in liquids surrounding dissolving 

crystals, maximizing the width of the chemical boundary layer. It is difficult to know 

which of these apply to the microscopic geometry of melt flow in the mantle, below 
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the continuum or Darcy scale, in which some intergranular pores could be effectively 

stagnant, while others may carry rapidly moving liquids. For this reason, we use 

linear dissolution rates derived from these studies ranging from 10-8 to 10~12 m/s. 

We convert volume to weight units using an approximate density of 3000 kg m~3 to 

obtain the reaction rate constant, R. 

To obtain effective dissolution rates (kg s_1 m-3), we calculated effective surface 

areas over which dissolution could occur in mantle peridotites, per unit volume. This 

calculation requires estimation of the grain size, grain shape, proportion of solid/liquid 

surface area to total surface area, and proportion of soluble phases in the peridotite. 

Pyroxene is much more soluble than olivine in ascending liquids (e.g.,[33, 36]), so for 

the purposes of this calculation we assumed that the proportion of soluble phases was 

the proportion of pyroxene in mantle peridotite. We have used the work of [90] to 

estimate solid-liquid surface areas for basalt-mantle systems as a function of porosity. 

In calculating the solid surface area per unit volume, we have assumed cube-shaped 

grains with linear dimensions from 0.01 to 0.5 cm. 

[36] calculated peridotite solubilities in typical melts along likely adiabatic P- 

T gradients beneath mido-ocean ridges, using a thermodynamic model for partially 

molten silicate systems. Thus this calculation incorporates the effect of the heat of 

fusion in limiting solid solubility. Results of these calculations were used to estimate 

an approximate value for the solubility gradient, given in Table 3.1. This calculation 

did not include the possible effects of advective heat transport by rising melt in 

high permeability channels. Potentially, if melt flux becomes large enough, this could 

result in local heating of channels to temperatures higher than the adiabat for partially 

melting mantle peridotite. If this occurred, it would increase the local solubility of 

solid phases to values higher than those in Table 3.1, and act to further enhance 

growth of channels. 

Steady state melt flow velocities were calculated using the reasoning of [78], in 

which the Darcy flux, <f>wQ = FV0 (where F is integrated mass fraction of melting and 

Vo is solid upwelling rate) for ascending mantle beneath a spreading ridge. Another 

simplification can be made if <j> is constant (e.g.,[27, 75]). In this formulation, if <j> is 
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much smaller than F, flow velocities are much greater than if the porosity is of the 

same order as the melt fraction. A range of values is used in Table 3.1 to investigate 

the maximum and minimum equilibration lengths likely in the mantle. Equilibration 

lengths calculated in this way range from Angstroms to meters. 

The attempt to quantify effective reactive surface area brings about an interest- 

ing hypothesis about the finite size behavior of these channels: When high poros- 

ity channels form, the solid-liquid surface area per unit volume is reduced and the 

characteristic equilibration length of the system will increase. Hence the horizontal 

wavelength of the channels will grow (from equation 3.55). Increasing melt velocity 

with height results in an additional increase in £eq. A tentative sketch of finite size 

behavior is given in Figure 3-9. 
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